BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 32525300)

  • 1. Plasmonic Biosensing with Aluminum Thin Films under the Kretschmann Configuration.
    Lambert AS; Valiulis SN; Malinick AS; Tanabe I; Cheng Q
    Anal Chem; 2020 Jul; 92(13):8654-8659. PubMed ID: 32525300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry.
    Vala M; Ertsgaard CT; Wittenberg NJ; Oh SH
    ACS Sens; 2019 Dec; 4(12):3265-3274. PubMed ID: 31762262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of a metal clad waveguide sensor based on a nanoporous-metal-oxide/metal multilayer film.
    Hotta K; Yamaguchi A; Teramae N
    Anal Chem; 2010 Jul; 82(14):6066-73. PubMed ID: 20578726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays.
    Couture M; Live LS; Dhawan A; Masson JF
    Analyst; 2012 Sep; 137(18):4162-70. PubMed ID: 22832550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal enhancement of protein binding by electrodeposited gold nanostructures for applications in Kretschmann-type SPR sensors.
    Nagase N; Terao K; Miyanishi N; Tamai K; Uchiyama N; Suzuki T; Takao H; Shimokawa F; Oohira F
    Analyst; 2012 Nov; 137(21):5034-40. PubMed ID: 23000888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues.
    Chung K; Rani A; Lee JE; Kim JE; Kim Y; Yang H; Kim SO; Kim D; Kim DH
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):144-51. PubMed ID: 25555067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing.
    Hotta K; Yamaguchi A; Teramae N
    ACS Nano; 2012 Feb; 6(2):1541-7. PubMed ID: 22233297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological sensing using transmission surface plasmon resonance spectroscopy.
    Lahav M; Vaskevich A; Rubinstein I
    Langmuir; 2004 Aug; 20(18):7365-7. PubMed ID: 15323475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic sensing using metallic nano-sculptured thin films.
    Abdulhalim I
    Small; 2014 Sep; 10(17):3499-514. PubMed ID: 24616387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminum nanopyramid array with tunable ultraviolet-visible-infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199.
    Li W; Qiu Y; Zhang L; Jiang L; Zhou Z; Chen H; Zhou J
    Biosens Bioelectron; 2016 May; 79():500-7. PubMed ID: 26748367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel gold-capped nanopillars imprinted on a polymer film for highly sensitive plasmonic biosensing.
    Saito M; Kitamura A; Murahashi M; Yamanaka K; Hoa le Q; Yamaguchi Y; Tamiya E
    Anal Chem; 2012 Jul; 84(13):5494-500. PubMed ID: 22670829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of an Aluminum/Polymer Plasmonic 2D Crystal for Label-Free Optical Biosensing.
    Tramarin L; Barrios CA
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30301186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passivated aluminum nanohole arrays for label-free biosensing applications.
    Canalejas-Tejero V; Herranz S; Bellingham A; Moreno-Bondi MC; Barrios CA
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1005-10. PubMed ID: 24354280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric detection of ultrathin dielectrics on strong interference coatings.
    Ayas S; Bakan G; Ozgur E; Celebi K; Torunoglu G; Dana A
    Opt Lett; 2018 Mar; 43(6):1379-1382. PubMed ID: 29543240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Table top surface plasmon resonance measurement system for efficient urea biosensing using ZnO thin film matrix.
    Paliwal A; Tomar M; Gupta V
    J Biomed Opt; 2016 Aug; 21(8):87006. PubMed ID: 27552310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High sensitivity molecule detection by plasmonic nanoantennas with selective binding at electromagnetic hotspots.
    Zhang N; Liu YJ; Yang J; Su X; Deng J; Chum CC; Hong M; Teng J
    Nanoscale; 2014; 6(3):1416-22. PubMed ID: 24311121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity improved plasmonic gold nanoholes array biosensor by coupling quantum-dots for the detection of specific biomolecular interactions.
    Niu L; Cheng K; Wu Y; Wang T; Shi Q; Liu D; Du Z
    Biosens Bioelectron; 2013 Dec; 50():137-42. PubMed ID: 23850779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of Copper-Based Biochips with Alumina for Biosensing Application.
    Beydoun N; Niberon Y; Arnaud L; Proust J; Nomenyo K; Zeng S; Lerondel G; Bruyant A
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free surface plasmon resonance biosensing with titanium nitride thin film.
    Qiu G; Ng SP; Wu CL
    Biosens Bioelectron; 2018 May; 106():129-135. PubMed ID: 29414079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.