These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32525322)

  • 1. Confinement-Mediated Phase Behavior of Hydrocarbon Fluids: Insights from Monte Carlo Simulations.
    Li J; Rao Q; Xia Y; Hoepfner M; Deo MD
    Langmuir; 2020 Jul; 36(26):7277-7288. PubMed ID: 32525322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confinement-Induced Supercriticality and Phase Equilibria of Hydrocarbons in Nanopores.
    Luo S; Lutkenhaus JL; Nasrabadi H
    Langmuir; 2016 Nov; 32(44):11506-11513. PubMed ID: 27754674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble Point Pressures of Hydrocarbon Mixtures in Multiscale Volumes from Density Functional Theory.
    Zhao Y; Wang Y; Zhong J; Xu Y; Sinton D; Jin Z
    Langmuir; 2018 Nov; 34(46):14058-14068. PubMed ID: 30351971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pore geometry on the compressibility of a confined simple fluid.
    Dobrzanski CD; Maximov MA; Gor GY
    J Chem Phys; 2018 Feb; 148(5):054503. PubMed ID: 29421901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersion truncation affects the phase behavior of bulk and confined fluids: Coexistence, adsorption, and criticality.
    Schlaich A; Coasne B
    J Chem Phys; 2019 Apr; 150(15):154104. PubMed ID: 31005104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gibbs Ensemble Monte Carlo Simulation of Fluids in Confinement: Relation between the Differential and Integral Pressures.
    Erdős M; Galteland O; Bedeaux D; Kjelstrup S; Moultos OA; Vlugt TJH
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32050452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does water condense in carbon pores?
    Liu JC; Monson PA
    Langmuir; 2005 Oct; 21(22):10219-25. PubMed ID: 16229548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling the Molecular Origin of Vapor-Liquid Phase Transition of Bulk and Confined Fluids.
    Jitmitsumphan S; Sripetdee T; Chaimueangchuen T; Tun HM; Chinkanjanarot S; Klomkliang N; Srinives S; Jonglertjunya W; Ling TC; Phadungbut P
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK
    Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary condensation and orientational ordering of confined polar fluids.
    Gramzow M; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011605. PubMed ID: 17358165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurements of pore fluid density by vibrating tube densimetry.
    Gruszkiewicz MS; Rother G; Wesolowski DJ; Cole DR; Wallacher D
    Langmuir; 2012 Mar; 28(11):5070-8. PubMed ID: 22369098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption behaviors of supercritical Lennard-Jones fluid in slit-like pores.
    Li Y; Cui M; Peng B; Qin M
    J Mol Graph Model; 2018 Aug; 83():84-91. PubMed ID: 29783083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo: influence of pore size.
    Puibasset J
    J Chem Phys; 2007 May; 126(18):184701. PubMed ID: 17508818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface tension and vapor-liquid phase coexistence of confined square-well fluid.
    Singh JK; Kwak SK
    J Chem Phys; 2007 Jan; 126(2):024702. PubMed ID: 17228961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore diameter effects on phase behavior of a gas condensate in graphitic one-and two-dimensional nanopores.
    Welch WR; Piri M
    J Mol Model; 2016 Jan; 22(1):22. PubMed ID: 26733485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A grand canonical Monte Carlo study of capillary condensation in mesoporous media: effect of the pore morphology and topology.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Aug; 121(8):3767-74. PubMed ID: 15303945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores.
    Coasne B; Czwartos J; Sliwinska-Bartkowiak M; Gubbins KE
    J Phys Chem B; 2009 Oct; 113(42):13874-81. PubMed ID: 19627116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat of capillary condensation in nanopores: new insights from the equation of state.
    Tan SP; Piri M
    Phys Chem Chem Phys; 2017 Feb; 19(7):5540-5549. PubMed ID: 28165086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.