These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 32525690)
1. Spin Splitting Energy of Transition Metals: A New, More Affordable Wave Function Benchmark Method and Its Use to Test Density Functional Theory. Zhang D; Truhlar DG J Chem Theory Comput; 2020 Jul; 16(7):4416-4428. PubMed ID: 32525690 [TBL] [Abstract][Full Text] [Related]
3. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals? Xu X; Zhang W; Tang M; Truhlar DG J Chem Theory Comput; 2015 May; 11(5):2036-52. PubMed ID: 26574408 [TBL] [Abstract][Full Text] [Related]
4. Improving the Accuracy in the Prediction of Transition-Metal Spin-State Energetics Using a Robust Variation-Based Approach: Density Functional Theory, CASPT2 and MC-PDFT Applied to the Case Study of Tris-Diimine Fe(II) Complexes. Paveliuc G; Lawson Daku LM J Phys Chem A; 2024 Oct; 128(39):8404-8420. PubMed ID: 39315737 [TBL] [Abstract][Full Text] [Related]
5. Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms. Xu X; Yang KR; Truhlar DG J Chem Theory Comput; 2014 May; 10(5):2070-84. PubMed ID: 26580534 [TBL] [Abstract][Full Text] [Related]
6. Predicting bond dissociation energy and bond length for bimetallic diatomic molecules: a challenge for electronic structure theory. Bao JL; Zhang X; Xu X; Truhlar DG Phys Chem Chem Phys; 2017 Feb; 19(8):5839-5854. PubMed ID: 28177019 [TBL] [Abstract][Full Text] [Related]
7. Comparison of density functionals for energy and structural differences between the high- [5T2g: (t2g)4(eg)2] and low- [1A1g: (t2g)6(eg)0] spin states of the hexaquoferrous cation [Fe(H2O)6]2+. Fouqueau A; Mer S; Casida ME; Lawson Daku LM; Hauser A; Mineva T; Neese F J Chem Phys; 2004 May; 120(20):9473-86. PubMed ID: 15267959 [TBL] [Abstract][Full Text] [Related]
8. Spin-State Splittings in 3d Transition-Metal Complexes Revisited: Toward a Reliable Theory Benchmark. Reimann M; Kaupp M J Chem Theory Comput; 2023 Jan; 19(1):97-108. PubMed ID: 36576816 [TBL] [Abstract][Full Text] [Related]
9. The electronic spectrum of AgCl2: ab initio benchmark versus density-functional theory calculations on the lowest ligand-field states including spin-orbit effects. Ramírez-Solís A; Poteau R; Daudey JP J Chem Phys; 2006 Jan; 124(3):034307. PubMed ID: 16438583 [TBL] [Abstract][Full Text] [Related]
10. Benchmarking quantum chemistry methods for spin-state energetics of iron complexes against quantitative experimental data. Radoń M Phys Chem Chem Phys; 2019 Feb; 21(9):4854-4870. PubMed ID: 30778468 [TBL] [Abstract][Full Text] [Related]
11. Relative energy of the high-(5T2g) and low-(1A1g) spin states of the ferrous complexes [Fe(L)(NHS4)]: CASPT2 versus density functional theory. Pierloot K; Vancoillie S J Chem Phys; 2008 Jan; 128(3):034104. PubMed ID: 18205485 [TBL] [Abstract][Full Text] [Related]
12. Spin-State Energetics of Fe(III) and Ru(III) Aqua Complexes: Accurate ab Initio Calculations and Evidence for Huge Solvation Effects. Radoń M; Gąssowska K; Szklarzewicz J; Broclawik E J Chem Theory Comput; 2016 Apr; 12(4):1592-605. PubMed ID: 26990105 [TBL] [Abstract][Full Text] [Related]
13. Predicting Bond Dissociation Energies of Transition-Metal Compounds by Multiconfiguration Pair-Density Functional Theory and Second-Order Perturbation Theory Based on Correlated Participating Orbitals and Separated Pairs. Bao JL; Odoh SO; Gagliardi L; Truhlar DG J Chem Theory Comput; 2017 Feb; 13(2):616-626. PubMed ID: 28001390 [TBL] [Abstract][Full Text] [Related]
14. Performance of Effective Core Potentials for Density Functional Calculations on 3d Transition Metals. Xu X; Truhlar DG J Chem Theory Comput; 2012 Jan; 8(1):80-90. PubMed ID: 26592870 [TBL] [Abstract][Full Text] [Related]
15. Ab initio study on the spectroscopy of CuCl2. II. Benchmark calculations on the X2Pi g-C2Deltag and X2Pi g-D2Deltag transitions. Ramírez-Solís A; Daudey JP J Chem Phys; 2005 Jan; 122(1):14315. PubMed ID: 15638667 [TBL] [Abstract][Full Text] [Related]
16. Comparison of density functionals for energy and structural differences between the high- [5T2g:(t2g)4(eg)2] and low- [1A1g:(t2g)6(eg)0] spin states of iron(II) coordination compounds. II. More functionals and the hexaminoferrous cation, [Fe(NH3)6]2+. Fouqueau A; Casida ME; Lawson Daku LM; Hauser A; Neese F J Chem Phys; 2005 Jan; 122(4):44110. PubMed ID: 15740238 [TBL] [Abstract][Full Text] [Related]
17. The vibrational spectrum of FeO2(+) isomers--theoretical benchmark and experiment. Maier TM; Boese AD; Sauer J; Wende T; Fagiani M; Asmis KR J Chem Phys; 2014 May; 140(20):204315. PubMed ID: 24880288 [TBL] [Abstract][Full Text] [Related]
19. Performance of CASPT2 and DFT for Relative Spin-State Energetics of Heme Models. Vancoillie S; Zhao H; Radoń M; Pierloot K J Chem Theory Comput; 2010 Feb; 6(2):576-82. PubMed ID: 26617311 [TBL] [Abstract][Full Text] [Related]
20. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results. Grabarek D; Walczak E; Andruniów T J Chem Theory Comput; 2016 May; 12(5):2346-56. PubMed ID: 27049438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]