BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32525760)

  • 1. CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing.
    Breunig CT; Köferle A; Neuner AM; Wiesbeck MF; Baumann V; Stricker SH
    Physiol Rev; 2021 Jan; 101(1):177-211. PubMed ID: 32525760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo epigenome editing and transcriptional modulation using CRISPR technology.
    Lau CH; Suh Y
    Transgenic Res; 2018 Dec; 27(6):489-509. PubMed ID: 30284145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing.
    Waryah CB; Moses C; Arooj M; Blancafort P
    Methods Mol Biol; 2018; 1767():19-63. PubMed ID: 29524128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic editing: Dissecting chromatin function in context.
    Policarpi C; Dabin J; Hackett JA
    Bioessays; 2021 May; 43(5):e2000316. PubMed ID: 33724509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Editing the epigenome: technologies for programmable transcription and epigenetic modulation.
    Thakore PI; Black JB; Hilton IB; Gersbach CA
    Nat Methods; 2016 Feb; 13(2):127-37. PubMed ID: 26820547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Editing the Epigenome: Reshaping the Genomic Landscape.
    Holtzman L; Gersbach CA
    Annu Rev Genomics Hum Genet; 2018 Aug; 19():43-71. PubMed ID: 29852072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease.
    Lau CH; Suh Y
    Gerontology; 2017; 63(2):103-117. PubMed ID: 27974723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenome engineering: new technologies for precision medicine.
    Sgro A; Blancafort P
    Nucleic Acids Res; 2020 Dec; 48(22):12453-12482. PubMed ID: 33196851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgenic mice for in vivo epigenome editing with CRISPR-based systems.
    Gemberling MP; Siklenka K; Rodriguez E; Tonn-Eisinger KR; Barrera A; Liu F; Kantor A; Li L; Cigliola V; Hazlett MF; Williams CA; Bartelt LC; Madigan VJ; Bodle JC; Daniels H; Rouse DC; Hilton IB; Asokan A; Ciofani M; Poss KD; Reddy TE; West AE; Gersbach CA
    Nat Methods; 2021 Aug; 18(8):965-974. PubMed ID: 34341582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR technologies for precise epigenome editing.
    Nakamura M; Gao Y; Dominguez AA; Qi LS
    Nat Cell Biol; 2021 Jan; 23(1):11-22. PubMed ID: 33420494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Editing the Epigenome to Tackle Brain Disorders.
    Liu XS; Jaenisch R
    Trends Neurosci; 2019 Dec; 42(12):861-870. PubMed ID: 31706628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs.
    Pflueger C; Tan D; Swain T; Nguyen T; Pflueger J; Nefzger C; Polo JM; Ford E; Lister R
    Genome Res; 2018 Aug; 28(8):1193-1206. PubMed ID: 29907613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-Based Engineering of the Epigenome.
    Pulecio J; Verma N; Mejía-Ramírez E; Huangfu D; Raya A
    Cell Stem Cell; 2017 Oct; 21(4):431-447. PubMed ID: 28985525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Editing the Epigenome: Overview, Open Questions, and Directions of Future Development.
    Rots MG; Jeltsch A
    Methods Mol Biol; 2018; 1767():3-18. PubMed ID: 29524127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From profiles to function in epigenomics.
    Stricker SH; Köferle A; Beck S
    Nat Rev Genet; 2017 Jan; 18(1):51-66. PubMed ID: 27867193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging Genome Engineering Tools in Crop Research and Breeding.
    Bilichak A; Gaudet D; Laurie J
    Methods Mol Biol; 2020; 2072():165-181. PubMed ID: 31541446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology.
    Xu X; Qi LS
    J Mol Biol; 2019 Jan; 431(1):34-47. PubMed ID: 29958882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.