These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 32525760)
21. A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology. Xu X; Qi LS J Mol Biol; 2019 Jan; 431(1):34-47. PubMed ID: 29958882 [TBL] [Abstract][Full Text] [Related]
22. Entering the post-epigenomic age: back to epigenetics. Bultmann S; Stricker SH Open Biol; 2018 Mar; 8(3):. PubMed ID: 29593118 [TBL] [Abstract][Full Text] [Related]
23. Fine-Tuning the Epigenetic Landscape: Chemical Modulation of Epigenome Editors. Noviello G; Gjaltema RAF Methods Mol Biol; 2024; 2842():57-77. PubMed ID: 39012590 [TBL] [Abstract][Full Text] [Related]
24. Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants. Fal K; Tomkova D; Vachon G; Chabouté ME; Berr A; Carles CC Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33419220 [TBL] [Abstract][Full Text] [Related]
26. A modular dCas9-based recruitment platform for combinatorial epigenome editing. Swain T; Pflueger C; Freytag S; Poppe D; Pflueger J; Nguyen TV; Li JK; Lister R Nucleic Acids Res; 2024 Jan; 52(1):474-491. PubMed ID: 38000387 [TBL] [Abstract][Full Text] [Related]
27. Editing of DNA Methylation Patterns Using CRISPR-Based Tools. Smith J; Banerjee R; Weeks RJ; Chatterjee A Methods Mol Biol; 2022; 2458():63-74. PubMed ID: 35103962 [TBL] [Abstract][Full Text] [Related]
28. Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems. Bae T; Hur JW; Kim D; Hur JK Genes Genomics; 2019 Aug; 41(8):871-877. PubMed ID: 31119685 [TBL] [Abstract][Full Text] [Related]
30. In vivo locus-specific editing of the neuroepigenome. Yim YY; Teague CD; Nestler EJ Nat Rev Neurosci; 2020 Sep; 21(9):471-484. PubMed ID: 32704051 [TBL] [Abstract][Full Text] [Related]
31. The Synergy between CRISPR and Chemical Engineering. Lau CH; Tin C Curr Gene Ther; 2019; 19(3):147-171. PubMed ID: 31267870 [TBL] [Abstract][Full Text] [Related]
32. Harnessing targeted DNA methylation and demethylation using dCas9. Pflueger C; Swain T; Lister R Essays Biochem; 2019 Dec; 63(6):813-825. PubMed ID: 31724704 [TBL] [Abstract][Full Text] [Related]
33. Current and future prospects for CRISPR-based tools in bacteria. Luo ML; Leenay RT; Beisel CL Biotechnol Bioeng; 2016 May; 113(5):930-43. PubMed ID: 26460902 [TBL] [Abstract][Full Text] [Related]
34. CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Syding LA; Nickl P; Kasparek P; Sedlacek R Cells; 2020 Apr; 9(4):. PubMed ID: 32316223 [TBL] [Abstract][Full Text] [Related]
35. Epigenome editing technologies for discovery and medicine. McCutcheon SR; Rohm D; Iglesias N; Gersbach CA Nat Biotechnol; 2024 Aug; 42(8):1199-1217. PubMed ID: 39075148 [TBL] [Abstract][Full Text] [Related]
36. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities. Yagci ZB; Kelkar GR; Johnson TJ; Sen D; Keung AJ Methods Mol Biol; 2024; 2842():23-55. PubMed ID: 39012589 [TBL] [Abstract][Full Text] [Related]
38. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Papikian A; Liu W; Gallego-Bartolomé J; Jacobsen SE Nat Commun; 2019 Feb; 10(1):729. PubMed ID: 30760722 [TBL] [Abstract][Full Text] [Related]
39. Using an Endogenous CRISPR-Cas System for Genome Editing in the Human Pathogen Clostridium difficile. Maikova A; Kreis V; Boutserin A; Severinov K; Soutourina O Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31399410 [TBL] [Abstract][Full Text] [Related]