These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 32525760)
41. Epigenome Editing in the Brain. Bashtrykov P; Jeltsch A Adv Exp Med Biol; 2017; 978():409-424. PubMed ID: 28523558 [TBL] [Abstract][Full Text] [Related]
42. Programmable targeted epigenetic editing using CRISPR system in Bombyx mori. Liu Y; Ma S; Chang J; Zhang T; Chen X; Liang Y; Xia Q Insect Biochem Mol Biol; 2019 Jul; 110():105-111. PubMed ID: 31022512 [TBL] [Abstract][Full Text] [Related]
43. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854 [No Abstract] [Full Text] [Related]
50. Genome and Epigenome Editing to Treat Disorders of the Hematopoietic System. Mussolino C; Alzubi J; Pennucci V; Turchiano G; Cathomen T Hum Gene Ther; 2017 Nov; 28(11):1105-1115. PubMed ID: 28806883 [TBL] [Abstract][Full Text] [Related]
51. A review of CRISPR associated genome engineering: application, advances and future prospects of genome targeting tool for crop improvement. Afzal S; Sirohi P; Singh NK Biotechnol Lett; 2020 Sep; 42(9):1611-1632. PubMed ID: 32642978 [TBL] [Abstract][Full Text] [Related]
52. Precise epigenomic editing with a SunTag-based modular epigenetic toolkit. Guhathakurta S; Adams L; Jeong I; Sivakumar A; Cha M; Bernardo Fiadeiro M; Hu HN; Kim YS Epigenetics; 2022 Dec; 17(13):2075-2081. PubMed ID: 35920441 [TBL] [Abstract][Full Text] [Related]
53. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033 [TBL] [Abstract][Full Text] [Related]
54. Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Goh YJ; Barrangou R Curr Opin Biotechnol; 2019 Apr; 56():163-171. PubMed ID: 30530241 [TBL] [Abstract][Full Text] [Related]
55. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure. Soriano V AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352 [TBL] [Abstract][Full Text] [Related]
56. Harnessing CRISPR-Cas systems for bacterial genome editing. Selle K; Barrangou R Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413 [TBL] [Abstract][Full Text] [Related]
57. On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals. Mojica FJM; Montoliu L Trends Microbiol; 2016 Oct; 24(10):811-820. PubMed ID: 27401123 [TBL] [Abstract][Full Text] [Related]