These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32525760)

  • 41. Epigenome Editing in the Brain.
    Bashtrykov P; Jeltsch A
    Adv Exp Med Biol; 2017; 978():409-424. PubMed ID: 28523558
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Programmable targeted epigenetic editing using CRISPR system in Bombyx mori.
    Liu Y; Ma S; Chang J; Zhang T; Chen X; Liang Y; Xia Q
    Insect Biochem Mol Biol; 2019 Jul; 110():105-111. PubMed ID: 31022512
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 44. Deciphering Plant Chromatin Regulation via CRISPR/dCas9-Based Epigenome Engineering.
    Dubois A; Roudier F
    Epigenomes; 2021 Aug; 5(3):. PubMed ID: 34968366
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges.
    Ueda J; Yamazaki T; Funakoshi H
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902207
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Epigenetic Editing in Prostate Cancer: Challenges and Opportunities.
    Pacheco MB; Camilo V; Henrique R; Jerónimo C
    Epigenetics; 2022 May; 17(5):564-588. PubMed ID: 34130596
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of eukaryotic chromatin state on CRISPR-Cas9 editing efficiencies.
    Verkuijl SA; Rots MG
    Curr Opin Biotechnol; 2019 Feb; 55():68-73. PubMed ID: 30189348
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.
    Sen D; Keung AJ
    Methods Mol Biol; 2018; 1767():65-87. PubMed ID: 29524129
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
    Tarasava K; Oh EJ; Eckert CA; Gill RT
    Biotechnol J; 2018 Sep; 13(9):e1700586. PubMed ID: 29917318
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome and Epigenome Editing to Treat Disorders of the Hematopoietic System.
    Mussolino C; Alzubi J; Pennucci V; Turchiano G; Cathomen T
    Hum Gene Ther; 2017 Nov; 28(11):1105-1115. PubMed ID: 28806883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A review of CRISPR associated genome engineering: application, advances and future prospects of genome targeting tool for crop improvement.
    Afzal S; Sirohi P; Singh NK
    Biotechnol Lett; 2020 Sep; 42(9):1611-1632. PubMed ID: 32642978
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Precise epigenomic editing with a SunTag-based modular epigenetic toolkit.
    Guhathakurta S; Adams L; Jeong I; Sivakumar A; Cha M; Bernardo Fiadeiro M; Hu HN; Kim YS
    Epigenetics; 2022 Dec; 17(13):2075-2081. PubMed ID: 35920441
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli.
    Goh YJ; Barrangou R
    Curr Opin Biotechnol; 2019 Apr; 56():163-171. PubMed ID: 30530241
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals.
    Mojica FJM; Montoliu L
    Trends Microbiol; 2016 Oct; 24(10):811-820. PubMed ID: 27401123
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeted genome regulation via synthetic programmable transcriptional regulators.
    Piatek A; Mahfouz MM
    Crit Rev Biotechnol; 2017 Jun; 37(4):429-440. PubMed ID: 27093352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cancer induction and suppression with transcriptional control and epigenome editing technologies.
    Nakade S; Yamamoto T; Sakuma T
    J Hum Genet; 2018 Feb; 63(2):187-194. PubMed ID: 29215091
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The CRISPR-Cas system: beyond genome editing].
    Croteau FR; Rousseau GM; Moineau S
    Med Sci (Paris); 2018 Oct; 34(10):813-819. PubMed ID: 30451675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.