These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 32525760)
61. Genome Editing and Its Applications in Model Organisms. Ma D; Liu F Genomics Proteomics Bioinformatics; 2015 Dec; 13(6):336-44. PubMed ID: 26762955 [TBL] [Abstract][Full Text] [Related]
62. CRISPR/Cas9-Enabled Multiplex Genome Editing and Its Application. Minkenberg B; Wheatley M; Yang Y Prog Mol Biol Transl Sci; 2017; 149():111-132. PubMed ID: 28712493 [TBL] [Abstract][Full Text] [Related]
63. Gene editing for cell engineering: trends and applications. Gupta SK; Shukla P Crit Rev Biotechnol; 2017 Aug; 37(5):672-684. PubMed ID: 27535623 [TBL] [Abstract][Full Text] [Related]
64. Chemical and Light Inducible Epigenome Editing. Zhao W; Wang Y; Liang FS Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32028669 [TBL] [Abstract][Full Text] [Related]
66. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Chaterji S; Ahn EH; Kim DH Theranostics; 2017; 7(18):4445-4469. PubMed ID: 29158838 [TBL] [Abstract][Full Text] [Related]
67. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. Lee SW; Frankston CM; Kim J Int Rev Cell Mol Biol; 2024; 383():191-230. PubMed ID: 38359969 [TBL] [Abstract][Full Text] [Related]
68. Inducible CRISPR genome-editing tool: classifications and future trends. Dai X; Chen X; Fang Q; Li J; Bai Z Crit Rev Biotechnol; 2018 Jun; 38(4):573-586. PubMed ID: 28936886 [TBL] [Abstract][Full Text] [Related]
69. Epigenome Editing: State of the Art, Concepts, and Perspectives. Kungulovski G; Jeltsch A Trends Genet; 2016 Feb; 32(2):101-113. PubMed ID: 26732754 [TBL] [Abstract][Full Text] [Related]
70. Probing the impact of chromatin conformation on genome editing tools. Chen X; Rinsma M; Janssen JM; Liu J; Maggio I; Gonçalves MA Nucleic Acids Res; 2016 Jul; 44(13):6482-92. PubMed ID: 27280977 [TBL] [Abstract][Full Text] [Related]
71. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Mahas A; Neal Stewart C; Mahfouz MM Biotechnol Adv; 2018; 36(1):295-310. PubMed ID: 29197619 [TBL] [Abstract][Full Text] [Related]
72. The epigenome: the next substrate for engineering. Park M; Keung AJ; Khalil AS Genome Biol; 2016 Aug; 17(1):183. PubMed ID: 27582168 [TBL] [Abstract][Full Text] [Related]
73. Engineering CRISPR mouse models of cancer. Weber J; Rad R Curr Opin Genet Dev; 2019 Feb; 54():88-96. PubMed ID: 31078083 [TBL] [Abstract][Full Text] [Related]
75. The CRISPR-Cas system - from bacterial immunity to genome engineering. Czarnek M; Bereta J Postepy Hig Med Dosw (Online); 2016 Sep; 70(0):901-16. PubMed ID: 27594566 [TBL] [Abstract][Full Text] [Related]
76. Decoding the noncoding genome via large-scale CRISPR screens. Shukla A; Huangfu D Curr Opin Genet Dev; 2018 Oct; 52():70-76. PubMed ID: 29913329 [TBL] [Abstract][Full Text] [Related]
77. Genome engineering tools for building cellular models of disease. Lin J; Musunuru K FEBS J; 2016 Sep; 283(17):3222-31. PubMed ID: 27218233 [TBL] [Abstract][Full Text] [Related]
79. Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Powell SK; Gregory J; Akbarian S; Brennand KJ Mol Cell Neurosci; 2017 Jul; 82():157-166. PubMed ID: 28549865 [TBL] [Abstract][Full Text] [Related]
80. CRISPR-Cas10 assisted editing of virulent staphylococcal phages. Nayeemul Bari SM; Hatoum-Aslan A Methods Enzymol; 2019; 616():385-409. PubMed ID: 30691652 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]