BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32525786)

  • 21. Dirac cone in α-graphdiyne: a first-principles study.
    Niu X; Mao X; Yang D; Zhang Z; Si M; Xue D
    Nanoscale Res Lett; 2013 Nov; 8(1):469. PubMed ID: 24206912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excellent Thermoelectric Properties in monolayer WSe
    Wang J; Xie F; Cao XH; An SC; Zhou WX; Tang LM; Chen KQ
    Sci Rep; 2017 Jan; 7():41418. PubMed ID: 28120912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphyne and graphdiyne nanoribbons: from their structures and properties to potential applications.
    Liu Q; Wang X; Yu J; Wang J
    Phys Chem Chem Phys; 2024 Jan; 26(3):1541-1563. PubMed ID: 38165768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A theoretical insight into phonon heat transport in graphene/biphenylene superlattice nanoribbons: a molecular dynamic study.
    Farzadian O; Dehaghani MZ; Kostas KV; Mashhadzadeh AH; Spitas C
    Nanotechnology; 2022 Jun; 33(35):. PubMed ID: 35613550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal Conductivity of Defective Graphene Oxide: A Molecular Dynamic Study.
    Yang Y; Cao J; Wei N; Meng D; Wang L; Ren G; Yan R; Zhang N
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30897783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering.
    Li X; Jiang H; He N; Yuan WE; Qian Y; Ouyang Y
    Cyborg Bionic Syst; 2022; 2022():9892526. PubMed ID: 36285317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons.
    Senturk AE; Oktem AS; Konukman AES
    J Mol Model; 2017 Aug; 23(8):247. PubMed ID: 28766111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic states of graphene nanoribbons and analytical solutions.
    Wakabayashi K; Sasaki KI; Nakanishi T; Enoki T
    Sci Technol Adv Mater; 2010 Oct; 11(5):054504. PubMed ID: 27877361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progress and Prospects of Graphdiyne-Based Materials in Biomedical Applications.
    Liu J; Chen C; Zhao Y
    Adv Mater; 2019 Oct; 31(42):e1804386. PubMed ID: 30773721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal transport in hexagonal boron nitride nanoribbons.
    Ouyang T; Chen Y; Xie Y; Yang K; Bao Z; Zhong J
    Nanotechnology; 2010 Jun; 21(24):245701. PubMed ID: 20484794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X; Zhang G; Li B
    J Phys Condens Matter; 2011 Jun; 23(21):215301. PubMed ID: 21555836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuning phononic and electronic contributions of thermoelectric in defected S-shape graphene nanoribbons.
    Bazrafshan MA; Khoeini F
    Sci Rep; 2022 Nov; 12(1):18419. PubMed ID: 36319726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison on thermal transport properties of graphene and phosphorene nanoribbons.
    Peng XF; Chen KQ
    Sci Rep; 2015 Nov; 5():16215. PubMed ID: 26577958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal conductivity and interfacial thermal resistance behavior for the polyaniline-boron carbide heterostructure.
    Mayelifartash A; Abdol MA; Sadeghzadeh S
    Phys Chem Chem Phys; 2021 Jun; 23(23):13310-13322. PubMed ID: 34095909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of Stone-Wales defects on the thermal properties of bilayer armchair graphene nanoribbons.
    Zhang X; Zhang J; Yang M
    RSC Adv; 2020 May; 10(33):19254-19257. PubMed ID: 35515457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.
    Xie ZX; Chen KQ; Duan W
    J Phys Condens Matter; 2011 Aug; 23(31):315302. PubMed ID: 21772066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and vibrational properties of 1D molecular wires: from graphene to graphdiyne.
    De Boni F; Pilot R; Milani A; Ivanovskaya VV; Abraham RJ; Casalini S; Pedron D; Casari CS; Sambi M; Sedona F
    Nanoscale; 2024 Jun; 16(23):11211-11222. PubMed ID: 38775497
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Stone-Wales defects on the thermal conductivity of graphene.
    Krasavin SE; Osipov VA
    J Phys Condens Matter; 2015 Oct; 27(42):425302. PubMed ID: 26436425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of vacancy defects on the interfacial thermal resistance of partially overlapped bilayer graphene.
    Wang BC; Cao Q; Shao W; Cui Z
    Phys Chem Chem Phys; 2022 Mar; 24(9):5546-5554. PubMed ID: 35174847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.