These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 32525990)
21. Maternal control of seed weight in rapeseed (Brassica napus L.): the causal link between the size of pod (mother, source) and seed (offspring, sink). Li N; Song D; Peng W; Zhan J; Shi J; Wang X; Liu G; Wang H Plant Biotechnol J; 2019 Apr; 17(4):736-749. PubMed ID: 30191657 [TBL] [Abstract][Full Text] [Related]
22. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons. Jaradat MR; Ruegger M; Bowling A; Butler H; Cutler AJ GM Crops Food; 2014; 5(4):302-20. PubMed ID: 25523176 [TBL] [Abstract][Full Text] [Related]
23. BnLATE, a Cys2/His2-Type Zinc-Finger Protein, Enhances Silique Shattering Resistance by Negatively Regulating Lignin Accumulation in the Silique Walls of Brassica napus. Tao Z; Huang Y; Zhang L; Wang X; Liu G; Wang H PLoS One; 2017; 12(1):e0168046. PubMed ID: 28081140 [TBL] [Abstract][Full Text] [Related]
24. Increased resistance to pod shatter is associated with changes in the vascular structure in pods of a resynthesized Brassica napus line. Child RD; Summers JE; Babij J; Farrent JW; Bruce DM J Exp Bot; 2003 Aug; 54(389):1919-30. PubMed ID: 12837816 [TBL] [Abstract][Full Text] [Related]
25. Zhong X; Zhou Q; Cui N; Cai D; Tang G Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30965683 [TBL] [Abstract][Full Text] [Related]
26. CRISPR-Cas9 Targeted Mutagenesis Leads to Simultaneous Modification of Different Homoeologous Gene Copies in Polyploid Oilseed Rape ( Braatz J; Harloff HJ; Mascher M; Stein N; Himmelbach A; Jung C Plant Physiol; 2017 Jun; 174(2):935-942. PubMed ID: 28584067 [TBL] [Abstract][Full Text] [Related]
27. Latent S alleles are widespread in cultivated self-compatible Brassica napus. Ekuere UU; Parkin IA; Bowman C; Marshall D; Lydiate DJ Genome; 2004 Apr; 47(2):257-65. PubMed ID: 15060578 [TBL] [Abstract][Full Text] [Related]
28. A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. Zhao Q; Wu J; Cai G; Yang Q; Shahid M; Fan C; Zhang C; Zhou Y Plant Biotechnol J; 2019 Dec; 17(12):2313-2324. PubMed ID: 31037811 [TBL] [Abstract][Full Text] [Related]
29. Mechanism of pod shattering in the forage legume Medicago ruthenica. Guo MW; Zhu L; Li HY; Liu WP; Wu ZN; Wang CH; Liu L; Li ZY; Li J Plant Physiol Biochem; 2022 Aug; 185():260-267. PubMed ID: 35717734 [TBL] [Abstract][Full Text] [Related]
31. Genetic variation and inheritance of phytosterol and oil content in a doubled haploid population derived from the winter oilseed rape Sansibar × Oase cross. Teh L; Möllers C Theor Appl Genet; 2016 Jan; 129(1):181-99. PubMed ID: 26518571 [TBL] [Abstract][Full Text] [Related]
32. Łangowski Ł; Goñi O; Marques FS; Hamawaki OT; da Silva CO; Nogueira APO; Teixeira MAJ; Glasenapp JS; Pereira M; O'Connell S Front Plant Sci; 2021; 12():631768. PubMed ID: 33719306 [TBL] [Abstract][Full Text] [Related]
33. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Howell PM; Sharpe AG; Lydiate DJ Genome; 2003 Jun; 46(3):454-60. PubMed ID: 12834062 [TBL] [Abstract][Full Text] [Related]
34. Molecular basis of a shattering resistance boosting global dissemination of soybean. Funatsuki H; Suzuki M; Hirose A; Inaba H; Yamada T; Hajika M; Komatsu K; Katayama T; Sayama T; Ishimoto M; Fujino K Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17797-802. PubMed ID: 25468966 [TBL] [Abstract][Full Text] [Related]
35. Increasing genetic variability in oilseed rape (Brassica napus) - Genotypes and phenotypes of oilseed rape transformed by wild type Agrobacterium rhizogenes. Hegelund JN; Liang C; Lauridsen UB; Kemp O; Lütken H; Müller R Plant Sci; 2018 Jun; 271():20-26. PubMed ID: 29650153 [TBL] [Abstract][Full Text] [Related]
36. Genetic dissection of thousand-seed weight and fine mapping of cqSW.A03-2 via linkage and association analysis in rapeseed (Brassica napus L.). Wang H; Yan M; Xiong M; Wang P; Liu Y; Xin Q; Wan L; Yang G; Hong D Theor Appl Genet; 2020 Apr; 133(4):1321-1335. PubMed ID: 32002584 [TBL] [Abstract][Full Text] [Related]
37. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Quijada PA; Udall JA; Lambert B; Osborn TC Theor Appl Genet; 2006 Aug; 113(3):549-61. PubMed ID: 16767447 [TBL] [Abstract][Full Text] [Related]
38. Research progress and mitigation strategies for pod shattering resistance in rapeseed. Liu L; Javed HH; Hu Y; Luo YQ; Peng X; Wu YC PeerJ; 2024; 12():e18105. PubMed ID: 39430553 [TBL] [Abstract][Full Text] [Related]
39. De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa. Zou J; Fu D; Gong H; Qian W; Xia W; Pires JC; Li R; Long Y; Mason AS; Yang TJ; Lim YP; Park BS; Meng J Plant J; 2011 Oct; 68(2):212-24. PubMed ID: 21689170 [TBL] [Abstract][Full Text] [Related]
40. Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Badani AG; Snowdon RJ; Wittkop B; Lipsa FD; Baetzel R; Horn R; De Haro A; Font R; Lühs W; Friedt W Genome; 2006 Dec; 49(12):1499-509. PubMed ID: 17426765 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]