BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

603 related articles for article (PubMed ID: 32526297)

  • 1. Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold.
    Orash Mahmoud Salehi A; Nourbakhsh MS; Rafienia M; Baradaran-Rafii A; Heidari Keshel S
    Int J Biol Macromol; 2020 Oct; 161():377-388. PubMed ID: 32526297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold.
    Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH
    Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty.
    Chen J; Yan C; Zhu M; Yao Q; Shao C; Lu W; Wang J; Mo X; Gu P; Fu Y; Fan X
    Int J Nanomedicine; 2015; 10():3337-50. PubMed ID: 26005345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation profiles of the poly(ε-caprolactone)/silk fibroin electrospinning membranes and their potential applications in tissue engineering.
    Xu D; Li Z; Deng Z; Nie X; Pan Y; Cheng G
    Int J Biol Macromol; 2024 May; 266(Pt 1):131124. PubMed ID: 38522701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Characterization of Silk Fibroin-Based Nanofibrous Scaffolds Supplemented with Gelatin for Corneal Tissue Engineering.
    Sahi AK; Varshney N; Poddar S; Gundu S; Mahto SK
    Cells Tissues Organs; 2021; 210(3):173-194. PubMed ID: 34252899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release.
    Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L
    Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical property and biological performance of electrospun silk fibroin-polycaprolactone scaffolds with aligned fibers.
    Yuan H; Shi H; Qiu X; Chen Y
    J Biomater Sci Polym Ed; 2016; 27(3):263-75. PubMed ID: 26588014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of extracellular matrix modified poly(ε-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration.
    Fernández-Pérez J; Kador KE; Lynch AP; Ahearne M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110415. PubMed ID: 31924032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk fibroin modified porous poly(epsilon-caprolactone) scaffold for human fibroblast culture in vitro.
    Chen G; Zhou P; Mei N; Chen X; Shao Z; Pan L; Wu C
    J Mater Sci Mater Med; 2004 Jun; 15(6):671-7. PubMed ID: 15346734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds.
    Kim BS; Park KE; Kim MH; You HK; Lee J; Park WH
    Int J Nanomedicine; 2015; 10():485-502. PubMed ID: 25624762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo.
    Jin D; Hu J; Xia D; Liu A; Kuang H; Du J; Mo X; Yin M
    Int J Nanomedicine; 2019; 14():4261-4276. PubMed ID: 31289441
    [No Abstract]   [Full Text] [Related]  

  • 13. Nature-Derived Aloe Vera Gel Blended Silk Fibroin Film Scaffolds for Cornea Endothelial Cell Regeneration and Transplantation.
    Kim do K; Sim BR; Khang G
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15160-8. PubMed ID: 27243449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoting keratocyte stem like cell proliferation and differentiation by aligned polycaprolactone-silk fibroin fibers containing Aloe vera.
    Salehi AOM; Keshel SH; Rafienia M; Nourbakhsh MS; Baradaran-Rafii A
    Biomater Adv; 2022 Jun; 137():212840. PubMed ID: 35929269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Janus silk fibroin/polycaprolactone-based scaffold with directionally aligned fibers and porous structure for bone regeneration.
    Tang Z; Li J; Fu L; Xia T; Dong X; Deng H; Zhang C; Xia H
    Int J Biol Macromol; 2024 Mar; 262(Pt 1):129927. PubMed ID: 38311130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of surface modified glycerol/silk fibroin film for application to corneal endothelial cell regeneration.
    Song JE; Sim BR; Jeon YS; Kim HS; Shin EY; Carlomagno C; Khang G
    J Biomater Sci Polym Ed; 2019 Mar; 30(4):263-275. PubMed ID: 30324858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and evaluation of oxygen-plasma-modified, aligned, poly (Є-caprolactone) and silk fibroin nanofibrous scaffold for corneal stromal regeneration.
    Bhattacharjee P; Madden PW; Patriarca E; Ahearne M
    Biomater Biosyst; 2023 Dec; 12():100083. PubMed ID: 37731910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH
    Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compliant and biomimetic three-layered vascular graft for small blood vessels.
    Zhang Y; Li XS; Guex AG; Liu SS; Müller E; Malini RI; Zhao HJ; Rottmar M; Maniura-Weber K; Rossi RM; Spano F
    Biofabrication; 2017 Apr; 9(2):025010. PubMed ID: 28382923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.