These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 32526402)
1. Shell-isolated nanoparticle-enhanced Raman spectroscopy for characterization of living yeast cells. Zdaniauskienė A; Charkova T; Ignatjev I; Melvydas V; Garjonytė R; Matulaitienė I; Talaikis M; Niaura G Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 240():118560. PubMed ID: 32526402 [TBL] [Abstract][Full Text] [Related]
2. The use of Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy for human breast cancer detection. Zheng C; Liang L; Xu S; Zhang H; Hu C; Bi L; Fan Z; Han B; Xu W Anal Bioanal Chem; 2014 Sep; 406(22):5425-32. PubMed ID: 24958347 [TBL] [Abstract][Full Text] [Related]
3. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Li JF; Tian XD; Li SB; Anema JR; Yang ZL; Ding Y; Wu YF; Zeng YM; Chen QZ; Ren B; Wang ZL; Tian ZQ Nat Protoc; 2013 Jan; 8(1):52-65. PubMed ID: 23237829 [TBL] [Abstract][Full Text] [Related]
4. Detection of circulating tumor cells in blood by shell-isolated nanoparticle - enhanced Raman spectroscopy (SHINERS) in microfluidic device. Niciński K; Krajczewski J; Kudelski A; Witkowska E; Trzcińska-Danielewicz J; Girstun A; Kamińska A Sci Rep; 2019 Jun; 9(1):9267. PubMed ID: 31239487 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy. Uzayisenga V; Lin XD; Li LM; Anema JR; Yang ZL; Huang YF; Lin HX; Li SB; Li JF; Tian ZQ Langmuir; 2012 Jun; 28(24):9140-6. PubMed ID: 22506587 [TBL] [Abstract][Full Text] [Related]
6. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Li JF; Huang YF; Ding Y; Yang ZL; Li SB; Zhou XS; Fan FR; Zhang W; Zhou ZY; Wu DY; Ren B; Wang ZL; Tian ZQ Nature; 2010 Mar; 464(7287):392-5. PubMed ID: 20237566 [TBL] [Abstract][Full Text] [Related]
7. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO Wei C; Xu MM; Fang CW; Jin Q; Yuan YX; Yao JL Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():262-268. PubMed ID: 28082212 [TBL] [Abstract][Full Text] [Related]
8. Quantitatively Revealing the Anomalous Enhancement in Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy Using Single-Nanoparticle Spectroscopy. Hu S; Wang J; Zhang YJ; Wen BY; Wu SS; Radjenovic PM; Yang Z; Ren B; Li JF ACS Nano; 2022 Dec; 16(12):21388-21396. PubMed ID: 36468912 [TBL] [Abstract][Full Text] [Related]
9. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Li JF; Anema JR; Wandlowski T; Tian ZQ Chem Soc Rev; 2015 Dec; 44(23):8399-409. PubMed ID: 26426491 [TBL] [Abstract][Full Text] [Related]
10. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy for Probing Riboflavin on Graphene. Zdaniauskienė A; Ignatjev I; Charkova T; Talaikis M; Lukša A; Šetkus A; Niaura G Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268866 [TBL] [Abstract][Full Text] [Related]
12. Star-shaped plasmonic nanostructures: New, simply synthetized materials for Raman analysis of surfaces. Krajczewski J; Michałowska A; Kudelski A Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117469. PubMed ID: 31450224 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of gold nanoparticles coated with ultrathin and chemically inert dielectric shells for SHINERS applications. Li JF; Li SB; Anema JR; Yang ZL; Huang YF; Ding Y; Wu YF; Zhou XS; Wu DY; Ren B; Wang ZL; Tian ZQ Appl Spectrosc; 2011 Jun; 65(6):620-6. PubMed ID: 21639983 [TBL] [Abstract][Full Text] [Related]
14. Pursuing shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) for concomitant detection of breast lesions and microcalcifications. Zheng C; Shao W; Paidi SK; Han B; Fu T; Wu D; Bi L; Xu W; Fan Z; Barman I Nanoscale; 2015 Oct; 7(40):16960-8. PubMed ID: 26415633 [TBL] [Abstract][Full Text] [Related]
15. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces. Krajczewski J; Kołątaj K; Pietrasik S; Kudelski A Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():1-7. PubMed ID: 29202354 [TBL] [Abstract][Full Text] [Related]
16. Exploring type II microcalcifications in benign and premalignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Liang L; Zheng C; Zhang H; Xu S; Zhang Z; Hu C; Bi L; Fan Z; Han B; Xu W Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():397-402. PubMed ID: 24887501 [TBL] [Abstract][Full Text] [Related]
17. Features of iron accumulation at high concentration in pulcherrimin-producing Metschnikowia yeast biomass. Mažeika K; Šiliauskas L; Skridlaitė G; Matelis A; Garjonytė R; Paškevičius A; Melvydas V J Biol Inorg Chem; 2021 May; 26(2-3):299-311. PubMed ID: 33586048 [TBL] [Abstract][Full Text] [Related]
18. Controlled fabrication of gold nanobipyramids/polypyrrole for shell-isolated nanoparticle-enhanced Raman spectroscopy to detect γ-aminobutyric acid. El-Said WA; Alshitari W; Choi JW Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117890. PubMed ID: 31839573 [TBL] [Abstract][Full Text] [Related]
19. Diazotization-coupling reaction-based selective determination of nitrite in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy. Zhang K; Hu Y; Li G Talanta; 2013 Nov; 116():712-8. PubMed ID: 24148465 [TBL] [Abstract][Full Text] [Related]
20. Porous SiO Si Y; Li L; Qin X; Bai Y; Li J; Yin Y Anal Chim Acta; 2019 May; 1057():1-10. PubMed ID: 30832907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]