These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32526407)

  • 21. Modeling the toxicity of chemical pesticides in multiple test species using local and global QSTR approaches.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 Jan; 5(1):340-353. PubMed ID: 30090350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo toxicity of nitroaromatic compounds to rats: QSTR modelling and interspecies toxicity relationship with mouse.
    Hao Y; Sun G; Fan T; Tang X; Zhang J; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y
    J Hazard Mater; 2020 Nov; 399():122981. PubMed ID: 32534390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides.
    Basant N; Gupta S
    Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ecotoxicological QSAR modeling of endocrine disruptor chemicals.
    Khan K; Roy K; Benfenati E
    J Hazard Mater; 2019 May; 369():707-718. PubMed ID: 30831523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictive modeling of chemical toxicity towards Pseudokirchneriella subcapitata using regression and classification based approaches.
    Pramanik S; Roy K
    Ecotoxicol Environ Saf; 2014 Mar; 101():184-90. PubMed ID: 24507144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory.
    Concu R; Kleandrova VV; Speck-Planche A; Cordeiro MNDS
    Nanotoxicology; 2017 Sep; 11(7):891-906. PubMed ID: 28937298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development.
    Barron MG; Lilavois CR; Martin TM
    Aquat Toxicol; 2015 Apr; 161():102-7. PubMed ID: 25700118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of chemical toxicity to wildlife species using interspecies correlation models.
    Raimondo S; Mineau P; Barron MG
    Environ Sci Technol; 2007 Aug; 41(16):5888-94. PubMed ID: 17874802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In silico quantitative structure toxicity relationship of chemical compounds: some case studies.
    Deeb O; Goodarzi M
    Curr Drug Saf; 2012 Sep; 7(4):289-97. PubMed ID: 23062241
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A generic avian physiologically-based kinetic (PBK) model and its application in three bird species.
    Baier V; Paini A; Schaller S; Scanes CG; Bone AJ; Ebeling M; Preuss TG; Witt J; Heckmann D
    Environ Int; 2022 Nov; 169():107547. PubMed ID: 36179644
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting the acute neurotoxicity of diverse organic solvents using probabilistic neural networks based QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Neurotoxicology; 2016 Mar; 53():45-52. PubMed ID: 26721664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extrapolation Factors for Characterizing Freshwater Ecotoxicity Effects.
    Aurisano N; Albizzati PF; Hauschild M; Fantke P
    Environ Toxicol Chem; 2019 Nov; 38(11):2568-2582. PubMed ID: 31393623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chimeric rhinoviruses obtained via genetic engineering or artificially induced recombination are viable only if the polyprotein coding sequence derives from the same species.
    Schibler M; Piuz I; Hao W; Tapparel C
    J Virol; 2015 Apr; 89(8):4470-80. PubMed ID: 25653446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. First report on development of quantitative interspecies structure-carcinogenicity relationship models and exploring discriminatory features for rodent carcinogenicity of diverse organic chemicals using OECD guidelines.
    Kar S; Roy K
    Chemosphere; 2012 Apr; 87(4):339-55. PubMed ID: 22225702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecotoxicity interspecies QAAR models from Daphnia toxicity of pharmaceuticals and personal care products.
    Sangion A; Gramatica P
    SAR QSAR Environ Res; 2016 Oct; 27(10):781-798. PubMed ID: 27775436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Silico Models for Ecotoxicity of Pharmaceuticals.
    Roy K; Kar S
    Methods Mol Biol; 2016; 1425():237-304. PubMed ID: 27311470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distributions for time, interspecies and intraspecies extrapolation for deriving occupational exposure limits.
    Dilger M; Schneider K; Drossard C; Ott H; Kaiser E
    J Appl Toxicol; 2022 May; 42(5):898-912. PubMed ID: 35187686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico prediction of chemical toxicity on avian species using chemical category approaches.
    Zhang C; Cheng F; Sun L; Zhuang S; Li W; Liu G; Lee PW; Tang Y
    Chemosphere; 2015 Mar; 122():280-287. PubMed ID: 25532772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.
    Sanderson H; Thomsen M
    Toxicol Lett; 2009 Jun; 187(2):84-93. PubMed ID: 19429249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.