These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32526407)

  • 41. Species extrapolation for the 21st century.
    Celander MC; Goldstone JV; Denslow ND; Iguchi T; Kille P; Meyerhoff RD; Smith BA; Hutchinson TH; Wheeler JR
    Environ Toxicol Chem; 2011 Jan; 30(1):52-63. PubMed ID: 20963850
    [TBL] [Abstract][Full Text] [Related]  

  • 42. First report on predictive chemometric modeling, 3D-toxicophore mapping and in silico screening of in vitro basal cytotoxicity of diverse organic chemicals.
    Kar S; Roy K
    Toxicol In Vitro; 2013 Mar; 27(2):597-608. PubMed ID: 23481321
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploring QSTR analysis of the toxicity of phenols and thiophenols using machine learning methods.
    Asadollahi-Baboli M
    Environ Toxicol Pharmacol; 2012 Nov; 34(3):826-31. PubMed ID: 23068157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CYP2E1 expression in bone marrow and its intra- and interspecies variability: approaches for a more reliable extrapolation from one species to another in the risk assessment of chemicals.
    Bernauer U; Vieth B; Ellrich R; Heinrich-Hirsch B; Jänig GR; Gundert-Remy U
    Arch Toxicol; 2000 Feb; 73(12):618-24. PubMed ID: 10741472
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Mechanism-based QSTR Model for Acute to Chronic Toxicity Extrapolation: A Case Study of Antibiotics on Luminous Bacteria.
    Wang D; Gu Y; Zheng M; Zhang W; Lin Z; Liu Y
    Sci Rep; 2017 Jul; 7(1):6022. PubMed ID: 28729627
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reliable and representative in silico predictions of freshwater ecotoxicological hazardous concentrations.
    Douziech M; Ragas AMJ; van Zelm R; Oldenkamp R; Jan Hendriks A; King H; Oktivaningrum R; Huijbregts MAJ
    Environ Int; 2020 Jan; 134():105334. PubMed ID: 31760260
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the prediction of cytotoxicity of diverse chemicals for topminnow (Poeciliopsis lucida) hepatoma cell line, PLHC-1
    Kahraman EN; Saçan MT
    SAR QSAR Environ Res; 2018 Sep; 29(9):675-691. PubMed ID: 30220216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of quantitative interspecies toxicity relationship modeling of chemicals to fish.
    Fatemi MH; Mousa Shahroudi E; Amini Z
    J Theor Biol; 2015 Sep; 380():16-23. PubMed ID: 26002421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling pesticides toxicity to Sheepshead minnow using QSAR.
    Yang L; Wang Y; Hao W; Chang J; Pan Y; Li J; Wang H
    Ecotoxicol Environ Saf; 2020 Apr; 193():110352. PubMed ID: 32120163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes.
    Basant N; Gupta S; Singh KP
    J Chem Inf Model; 2015 Jul; 55(7):1337-48. PubMed ID: 26158470
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of chemical reaction mechanistic domains to an ecotoxicity QSAR model, the KAshinhou Tool for Ecotoxicity (KATE).
    Furuhama A; Hasunuma K; Aoki Y; Yoshioka Y; Shiraishi H
    SAR QSAR Environ Res; 2011; 22(5-6):505-23. PubMed ID: 21604231
    [TBL] [Abstract][Full Text] [Related]  

  • 52. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors.
    Kar S; Roy K
    J Hazard Mater; 2010 May; 177(1-3):344-51. PubMed ID: 20045248
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis.
    Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E
    Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species.
    Raimondo S; Jackson CR; Barron MG
    Environ Sci Technol; 2010 Oct; 44(19):7711-6. PubMed ID: 20795664
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting the acute ecotoxicity of chemical substances by machine learning using graph theory.
    Takata M; Lin BL; Xue M; Zushi Y; Terada A; Hosomi M
    Chemosphere; 2020 Jan; 238():124604. PubMed ID: 31450113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interspecies scaling and comparisons in drug development and toxicokinetics.
    Ings RM
    Xenobiotica; 1990 Nov; 20(11):1201-31. PubMed ID: 2275215
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Absolute risk or relative risk? A study of intraspecies and interspecies extrapolation of chemical-induced cancer risk.
    Kuo J; Linkov I; Rhomberg L; Polkanov M; Gray G; Wilson R
    Risk Anal; 2002 Feb; 22(1):141-57. PubMed ID: 12017356
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ecotoxicological QSAR modelling of organic chemicals against
    Khan K; Roy K
    SAR QSAR Environ Res; 2019 Sep; 30(9):665-681. PubMed ID: 31474156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.
    Sangion A; Gramatica P
    Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.
    Nendza M; Wenzel A
    Environ Sci Pollut Res Int; 2006 May; 13(3):192-203. PubMed ID: 16758710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.