BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32526420)

  • 1. A systematic review on carbohydrate biopolymers for adsorptive remediation of copper ions from aqueous environments-part A: Classification and modification strategies.
    Khademian E; Salehi E; Sanaeepur H; Galiano F; Figoli A
    Sci Total Environ; 2020 Oct; 738():139829. PubMed ID: 32526420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic review on carbohydrate biopolymers for adsorptive remediation of copper ions from aqueous environments-Part B: Isotherms, thermokinetics and reusability.
    Khademian E; Salehi E; Sanaeepur H; Galiano F; Figoli A
    Sci Total Environ; 2021 Feb; 754():142048. PubMed ID: 33254853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advancements in engineered biopolymeric-nanohybrids: A greener approach for adsorptive-remediation of noxious metals from aqueous matrices.
    Rizwan K; Babar ZB; Munir S; Arshad A; Rauf A
    Environ Res; 2022 Dec; 215(Pt 3):114398. PubMed ID: 36174757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd
    Fouda-Mbanga BG; Prabakaran E; Pillay K
    Biotechnol Rep (Amst); 2021 Jun; 30():e00609. PubMed ID: 33898275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel recyclable adsorbent for the removal of copper(II) and lead(II) from aqueous solution.
    Niu Y; Li K; Ying D; Wang Y; Jia J
    Bioresour Technol; 2017 Apr; 229():63-68. PubMed ID: 28107723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Selective Conditions on Various Composite Sorbents for Enhanced Removal of Copper (II) Ions from Aqueous Environments.
    Adeeyo RO; Edokpayi JN; Bello OS; Adeeyo AO; Odiyo JO
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31756953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption.
    Zhao C; Liu G; Tan Q; Gao M; Chen G; Huang X; Xu X; Li L; Wang J; Zhang Y; Xu D
    J Adv Res; 2023 Feb; 44():53-70. PubMed ID: 36725194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental applications of chitosan and cellulosic biopolymers: A comprehensive outlook.
    Kanmani P; Aravind J; Kamaraj M; Sureshbabu P; Karthikeyan S
    Bioresour Technol; 2017 Oct; 242():295-303. PubMed ID: 28366689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on chitosan-based adsorptive membranes.
    Salehi E; Daraei P; Arabi Shamsabadi A
    Carbohydr Polym; 2016 Nov; 152():419-432. PubMed ID: 27516289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: Magnetic chitosan/cellulose microspheres.
    Luo X; Zeng J; Liu S; Zhang L
    Bioresour Technol; 2015 Oct; 194():403-6. PubMed ID: 26216781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Granulation of Lithium-Ion Sieves Using Biopolymers: A Review.
    Udoetok IA; Karoyo AH; Ubuo EE; Asuquo ED
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on remediation of dye adulterated system by ecologically innocuous "biopolymers/natural gums-based composites".
    Abbasi A; Khatoon F; Ikram S
    Int J Biol Macromol; 2023 Mar; 231():123240. PubMed ID: 36639083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation.
    Kasbaji M; Mennani M; Oubenali M; Ait Benhamou A; Boussetta A; Ablouh EH; Mbarki M; Grimi N; El Achaby M; Moubarik A
    Environ Pollut; 2023 Oct; 335():122349. PubMed ID: 37562526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubility and Selectivity Effects of the Anion on the Adsorption of Different Heavy Metal Ions onto Chitosan.
    Weißpflog J; Gündel A; Vehlow D; Steinbach C; Müller M; Boldt R; Schwarz S; Schwarz D
    Molecules; 2020 May; 25(11):. PubMed ID: 32471099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biopolymer‑carbonaceous composites, progress, and adsorptive mitigation of water pollutants.
    Khan I; Ali N; Jing Z; Khan A; Ali F; Hhan F; Kareem A; Sun Y; Al Balushi RA; Al-Hinaai MM; Al-Harthy T; Nawaz A
    Int J Biol Macromol; 2024 Jun; 274(Pt 2):133379. PubMed ID: 38936571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants.
    Ahmed MJ; Hameed BH; Hummadi EH
    Carbohydr Polym; 2020 Nov; 247():116690. PubMed ID: 32829818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of Cu(II) ions from aqueous solution using pyridine-2,6-dicarboxylic acid crosslinked chitosan as a green biopolymer adsorbent.
    Bisiriyu IO; Meijboom R
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2484-2493. PubMed ID: 33470197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-(2-Carboxybenzyl) grafted chitosan as adsorptive agent for simultaneous removal of positively and negatively charged toxic metal ions.
    Kyzas GZ; Kostoglou M; Lazaridis NK; Bikiaris DN
    J Hazard Mater; 2013 Jan; 244-245():29-38. PubMed ID: 23270947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of heavy metals in aquatic environment by graphene oxide composites: a review.
    Zhang Q; Hou Q; Huang G; Fan Q
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):190-209. PubMed ID: 31838692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review on biopolymers and composites - Evolving material as adsorbents in removal of environmental pollutants.
    Yaashikaa PR; Senthil Kumar P; Karishma S
    Environ Res; 2022 Sep; 212(Pt A):113114. PubMed ID: 35331699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.