BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32526450)

  • 1. Translational considerations in nanomedicine: The oncology perspective.
    Gabizon AA; de Rosales RTM; La-Beck NM
    Adv Drug Deliv Rev; 2020; 158():140-157. PubMed ID: 32526450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms and Barriers in Cancer Nanomedicine: Addressing Challenges, Looking for Solutions.
    Anchordoquy TJ; Barenholz Y; Boraschi D; Chorny M; Decuzzi P; Dobrovolskaia MA; Farhangrazi ZS; Farrell D; Gabizon A; Ghandehari H; Godin B; La-Beck NM; Ljubimova J; Moghimi SM; Pagliaro L; Park JH; Peer D; Ruoslahti E; Serkova NJ; Simberg D
    ACS Nano; 2017 Jan; 11(1):12-18. PubMed ID: 28068099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomedicine: is it lost in translation?
    Greish K; Mathur A; Bakhiet M; Taurin S
    Ther Deliv; 2018 Mar; 9(4):269-285. PubMed ID: 29495928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically modulated cancer therapeutic delivery: past, present and future.
    Strong LE; West JL
    Ther Deliv; 2015; 6(5):545-58. PubMed ID: 26001172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anticancer Drug Delivery: An Update on Clinically Applied Nanotherapeutics.
    Marchal S; El Hor A; Millard M; Gillon V; Bezdetnaya L
    Drugs; 2015 Sep; 75(14):1601-11. PubMed ID: 26323338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.
    Shi J; Xiao Z; Kamaly N; Farokhzad OC
    Acc Chem Res; 2011 Oct; 44(10):1123-34. PubMed ID: 21692448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives.
    Cadete A; Alonso MJ
    Nanomedicine (Lond); 2016 Sep; 11(17):2341-57. PubMed ID: 27526874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle approaches to combating drug resistance.
    Moon JH; Moxley JW; Zhang P; Cui H
    Future Med Chem; 2015 Aug; 7(12):1503-10. PubMed ID: 26334205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging-guided nanomedicine development.
    Bernal A; Calcagno C; Mulder WJM; Pérez-Medina C
    Curr Opin Chem Biol; 2021 Aug; 63():78-85. PubMed ID: 33735814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms and Barriers in Nanomedicine: Progress in the Field and Future Directions.
    Anchordoquy T; Artzi N; Balyasnikova IV; Barenholz Y; La-Beck NM; Brenner JS; Chan WCW; Decuzzi P; Exner AA; Gabizon A; Godin B; Lai SK; Lammers T; Mitchell MJ; Moghimi SM; Muzykantov VR; Peer D; Nguyen J; Popovtzer R; Ricco M; Serkova NJ; Singh R; Schroeder A; Schwendeman AA; Straehla JP; Teesalu T; Tilden S; Simberg D
    ACS Nano; 2024 Jun; 18(22):13983-13999. PubMed ID: 38767983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are existing standard methods suitable for the evaluation of nanomedicines: some case studies.
    Gioria S; Caputo F; Urbán P; Maguire CM; Bremer-Hoffmann S; Prina-Mello A; Calzolai L; Mehn D
    Nanomedicine (Lond); 2018 Mar; 13(5):539-554. PubMed ID: 29381129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart Drug-Delivery Systems for Cancer Nanotherapy.
    Sanchez-Moreno P; Ortega-Vinuesa JL; Peula-Garcia JM; Marchal JA; Boulaiz H
    Curr Drug Targets; 2018 Feb; 19(4):339-359. PubMed ID: 27231107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of Pharmacological Treatment Options for Lung Cancer: Emphasis on Novel Nanotherapeutics and Associated Toxicity.
    England CG; Ng CF; van Berkel V; Frieboes HB
    Curr Drug Targets; 2015; 16(10):1057-87. PubMed ID: 25944016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes.
    Palazzolo S; Bayda S; Hadla M; Caligiuri I; Corona G; Toffoli G; Rizzolio F
    Curr Med Chem; 2018; 25(34):4224-4268. PubMed ID: 28875844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liposomes as a Promising Ultrasound-Triggered Drug Delivery System in Cancer Treatment.
    Salkho NM; Turki RZ; Guessoum O; Martins AM; Vitor RF; Husseini GA
    Curr Mol Med; 2017; 17(10):668-688. PubMed ID: 29663885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.
    Bar-Zeev M; Livney YD; Assaraf YG
    Drug Resist Updat; 2017 Mar; 31():15-30. PubMed ID: 28867241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in "smart" delivery systems for extended drug release in cancer therapy.
    Kalaydina RV; Bajwa K; Qorri B; Decarlo A; Szewczuk MR
    Int J Nanomedicine; 2018; 13():4727-4745. PubMed ID: 30154657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomedicines for cancer therapy: current status, challenges and future prospects.
    Bor G; Mat Azmi ID; Yaghmur A
    Ther Deliv; 2019 Feb; 10(2):113-132. PubMed ID: 30678550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.