These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32526617)
1. Body center of mass trajectory and mechanical energy using inertial sensors: a feasible stride? Pavei G; Salis F; Cereatti A; Bergamini E Gait Posture; 2020 Jul; 80():199-205. PubMed ID: 32526617 [TBL] [Abstract][Full Text] [Related]
2. On the Estimation Accuracy of the 3D Body Center of Mass Trajectory during Human Locomotion: Inverse vs. Forward Dynamics. Pavei G; Seminati E; Cazzola D; Minetti AE Front Physiol; 2017; 8():129. PubMed ID: 28337148 [TBL] [Abstract][Full Text] [Related]
3. Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study. Simonetti E; Bergamini E; Vannozzi G; Bascou J; Pillet H Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946325 [TBL] [Abstract][Full Text] [Related]
4. On the impact of the erroneous identification of inertial sensors' locations on segments and whole-body centers of mass accelerations: a sensitivity study in one transfemoral amputee. Basel J; Simonetti E; Bergamini E; Pillet H Med Biol Eng Comput; 2021 Oct; 59(10):2115-2126. PubMed ID: 34467446 [TBL] [Abstract][Full Text] [Related]
5. Measurement of uni-planar and sport specific trunk motion using magneto-inertial measurement units: The concurrent validity of Noraxon and Xsens systems relative to a retro-reflective system. Cottam DS; Campbell AC; Davey MPC; Kent P; Elliott BC; Alderson JA Gait Posture; 2022 Feb; 92():129-134. PubMed ID: 34844151 [TBL] [Abstract][Full Text] [Related]
6. Estimation of the ground reaction forces from a single video camera based on the spring-like center of mass dynamics of human walking. Jeong H; Park S J Biomech; 2020 Dec; 113():110074. PubMed ID: 33176224 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional acceleration of the body center of mass in people with transfemoral amputation: Identification of a minimal body segment network. Simonetti E; Bergamini E; Bascou J; Vannozzi G; Pillet H Gait Posture; 2021 Oct; 90():129-136. PubMed ID: 34455201 [TBL] [Abstract][Full Text] [Related]
8. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Gard SA; Miff SC; Kuo AD Hum Mov Sci; 2004 Apr; 22(6):597-610. PubMed ID: 15063043 [TBL] [Abstract][Full Text] [Related]
9. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running. Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885 [TBL] [Abstract][Full Text] [Related]
10. Elbow joint kinematics during cricket bowling using magneto-inertial sensors: A feasibility study. Wells D; Alderson J; Camomilla V; Donnelly C; Elliott B; Cereatti A J Sports Sci; 2019 Mar; 37(5):515-524. PubMed ID: 30175947 [TBL] [Abstract][Full Text] [Related]
11. Influence of IMU position and orientation placement errors on ground reaction force estimation. Tan T; Chiasson DP; Hu H; Shull PB J Biomech; 2019 Dec; 97():109416. PubMed ID: 31630774 [TBL] [Abstract][Full Text] [Related]
12. Estimation of Tri-Axial Walking Ground Reaction Forces of Left and Right Foot from Total Forces in Real-Life Environments. Shahabpoor E; Pavic A Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29921797 [TBL] [Abstract][Full Text] [Related]
13. Sensor-to-body calibration procedure for clinical motion analysis of lower limb using magnetic and inertial measurement units. Nazarahari M; Noamani A; Ahmadian N; Rouhani H J Biomech; 2019 Mar; 85():224-229. PubMed ID: 30732911 [TBL] [Abstract][Full Text] [Related]
14. Estimation of the center of rotation using wearable magneto-inertial sensors. Crabolu M; Pani D; Raffo L; Cereatti A J Biomech; 2016 Dec; 49(16):3928-3933. PubMed ID: 27890536 [TBL] [Abstract][Full Text] [Related]
15. Comparison of three-dimensional body centre of mass trajectories during locomotion through zero- and one-dimensional statistics. Luciano F; Ruggiero L; Minetti A; Pavei G Sci Rep; 2022 Oct; 12(1):17777. PubMed ID: 36273024 [TBL] [Abstract][Full Text] [Related]
16. Estimation of Human Center of Mass Position through the Inertial Sensors-Based Methods in Postural Tasks: An Accuracy Evaluation. Germanotta M; Mileti I; Conforti I; Del Prete Z; Aprile I; Palermo E Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467072 [TBL] [Abstract][Full Text] [Related]
17. Real-Life Measurement of Tri-Axial Walking Ground Reaction Forces Using Optimal Network of Wearable Inertial Measurement Units. Shahabpoor E; Pavic A; Brownjohn JMW; Billings SA; Guo LZ; Bocian M IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1243-1253. PubMed ID: 29877849 [TBL] [Abstract][Full Text] [Related]
18. Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults. Bertoli M; Cereatti A; Trojaniello D; Avanzino L; Pelosin E; Del Din S; Rochester L; Ginis P; Bekkers EMJ; Mirelman A; Hausdorff JM; Della Croce U Biomed Eng Online; 2018 May; 17(1):58. PubMed ID: 29739456 [TBL] [Abstract][Full Text] [Related]
19. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system. Faber GS; Chang CC; Kingma I; Dennerlein JT; van Dieën JH J Biomech; 2016 Apr; 49(6):904-912. PubMed ID: 26795123 [TBL] [Abstract][Full Text] [Related]
20. Validation and Assessment of a Posture Measurement System with Magneto-Inertial Measurement Units. Paloschi D; Bravi M; Schena E; Miccinilli S; Morrone M; Sterzi S; Saccomandi P; Massaroni C Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]