These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 32526635)
1. Acid soluble extracellular matrix confers structural stability to marine Bacillus haynesii pellicle biofilms. K R; Y V N; V P V Colloids Surf B Biointerfaces; 2020 Oct; 194():111160. PubMed ID: 32526635 [TBL] [Abstract][Full Text] [Related]
2. Biofilm formation and extracellular polymeric substance (EPS) production by Bacillus haynesii and influence of hexavalent chromium. Maurya A; Kumar R; Yadav P; Singh A; Yadav A; Chowdhary P; Raj A Bioresour Technol; 2022 May; 352():127109. PubMed ID: 35378281 [TBL] [Abstract][Full Text] [Related]
3. Variable pH and subsequent change in pCO Rath S; Palit K; Das S Environ Res; 2022 Nov; 214(Pt 4):114128. PubMed ID: 36007573 [TBL] [Abstract][Full Text] [Related]
4. Pellicle formation by Escherichia coli K-12: Role of adhesins and motility. Golub SR; Overton TW J Biosci Bioeng; 2021 Apr; 131(4):381-389. PubMed ID: 33495047 [TBL] [Abstract][Full Text] [Related]
5. Architecture and physico-chemical properties of Bacillus amyloliquefaciens L-17 pellicle formed at the air-liquid interface. Zaidi-Ait Salem M; Nait Chabane Y; Girbal-Neuhauser E J Biosci Bioeng; 2021 Dec; 132(6):560-568. PubMed ID: 34538716 [TBL] [Abstract][Full Text] [Related]
6. Circular pellicles formed by Pseudomonas alkylphenolica KL28 are a sophisticated architecture principally designed by matrix substance. Song MM; Veeranagouda Y; Ganzorig M; Lee K J Microbiol; 2018 Nov; 56(11):790-797. PubMed ID: 30353464 [TBL] [Abstract][Full Text] [Related]
7. The exopolysaccharide-eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm. Peng N; Cai P; Mortimer M; Wu Y; Gao C; Huang Q BMC Microbiol; 2020 May; 20(1):115. PubMed ID: 32410574 [TBL] [Abstract][Full Text] [Related]
8. Mechanical Behavior of a Bacillus subtilis Pellicle. Hollenbeck EC; Douarche C; Allain JM; Roger P; Regeard C; Cegelski L; Fuller GG; Raspaud E J Phys Chem B; 2016 Jul; 120(26):6080-8. PubMed ID: 27046510 [TBL] [Abstract][Full Text] [Related]
9. Collective Vortex-Like Movement of Steinberg N; Rosenberg G; Keren-Paz A; Kolodkin-Gal I Front Microbiol; 2018; 9():590. PubMed ID: 29651280 [TBL] [Abstract][Full Text] [Related]
10. Effects of hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances and the architecture of biofilms. Pan M; Li H; Han X; Ma W; Li X; Guo Q; Yang B; Ding C; Ma Y Chemosphere; 2022 Nov; 307(Pt 4):135965. PubMed ID: 35963380 [TBL] [Abstract][Full Text] [Related]
11. Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Dragoš A; Martin M; Falcón García C; Kricks L; Pausch P; Heimerl T; Bálint B; Maróti G; Bange G; López D; Lieleg O; Kovács ÁT Nat Microbiol; 2018 Dec; 3(12):1451-1460. PubMed ID: 30297741 [TBL] [Abstract][Full Text] [Related]
12. A Sequence of Developmental Events Occurs Underneath Growing Lee LM; Rosenberg G; Rubinstein SM Front Microbiol; 2019; 10():842. PubMed ID: 31105657 [TBL] [Abstract][Full Text] [Related]
13. The Exo-Polysaccharide Component of Extracellular Matrix is Essential for the Viscoelastic Properties of Pandit S; Fazilati M; Gaska K; Derouiche A; Nypelö T; Mijakovic I; Kádár R Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32942569 [TBL] [Abstract][Full Text] [Related]
14. Kin Discrimination Modifies Strain Distribution, Spatial Segregation, and Incorporation of Extracellular Matrix Polysaccharide Mutants of Bacillus subtilis Strains into Mixed Floating Biofilms. Bolješić M; Kraigher B; Dogsa I; Jerič Kokelj B; Mandic-Mulec I Appl Environ Microbiol; 2022 Sep; 88(18):e0087122. PubMed ID: 36094206 [TBL] [Abstract][Full Text] [Related]