BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32526719)

  • 1. Using a small-core graphite calorimeter for dosimetry and scintillator quenching corrections in a therapeutic proton beam.
    Christensen JB; Vestergaard A; Andersen CE
    Phys Med Biol; 2020 Nov; 65(21):215023. PubMed ID: 32526719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passively scattered proton beam entrance dosimetry with a plastic scintillation detector.
    Wootton L; Holmes C; Sahoo N; Beddar S
    Phys Med Biol; 2015 Feb; 60(3):1185-98. PubMed ID: 25591037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.
    Ebenau M; Radeck D; Bambynek M; Sommer H; Flühs D; Spaan B; Eichmann M
    Med Phys; 2016 Aug; 43(8):4598. PubMed ID: 27487876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the quenching correction factors for plastic scintillation detectors in therapeutic high-energy proton beams.
    Wang LL; Perles LA; Archambault L; Sahoo N; Mirkovic D; Beddar S
    Phys Med Biol; 2012 Dec; 57(23):7767-81. PubMed ID: 23128412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a plastic scintillating detector for the Small Animal Radiation Research Platform (SARRP).
    Johnstone CD; Therriault-Proulx F; Beaulieu L; Bazalova-Carter M
    Med Phys; 2019 Jan; 46(1):394-404. PubMed ID: 30417377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionization quenching correction for a 3D scintillator detector exposed to scanning proton beams.
    Alsanea F; Darne C; Robertson D; Beddar S
    Phys Med Biol; 2020 Apr; 65(7):075005. PubMed ID: 32079001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quality assurance in proton beam therapy using a plastic scintillator and a commercially available digital camera.
    Almurayshid M; Helo Y; Kacperek A; Griffiths J; Hebden J; Gibson A
    J Appl Clin Med Phys; 2017 Sep; 18(5):210-219. PubMed ID: 28755419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relating ionization quenching in organic plastic scintillators to basic material properties by modelling excitation density transport and amorphous track structure during proton irradiation.
    Christensen JB; Andersen CE
    Phys Med Biol; 2018 Sep; 63(19):195010. PubMed ID: 30183687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter.
    Harty PD; Lye JE; Ramanathan G; Butler DJ; Hall CJ; Stevenson AW; Johnston PN
    Med Phys; 2014 May; 41(5):052101. PubMed ID: 24784390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the response of miniature scintillation detectors when irradiated with proton beams.
    Archambault L; Polf JC; Beaulieu L; Beddar S
    Phys Med Biol; 2008 Apr; 53(7):1865-76. PubMed ID: 18364543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams.
    Lourenço A; Thomas R; Bouchard H; Kacperek A; Vondracek V; Royle G; Palmans H
    Med Phys; 2016 Jul; 43(7):4122. PubMed ID: 27370132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic characterization of the low-energy photon response of plastic scintillation detectors.
    Boivin J; Beddar S; Bonde C; Schmidt D; Culberson W; Guillemette M; Beaulieu L
    Phys Med Biol; 2016 Aug; 61(15):5569-86. PubMed ID: 27384872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exradin W1 plastic scintillation detector for in vivo skin dosimetry in passive scattering proton therapy.
    Alsanea F; Wootton L; Sahoo N; Kudchadker R; Mahmood U; Beddar S
    Phys Med; 2018 Mar; 47():58-63. PubMed ID: 29609819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quenching correction for volumetric scintillation dosimetry of proton beams.
    Robertson D; Mirkovic D; Sahoo N; Beddar S
    Phys Med Biol; 2013 Jan; 58(2):261-73. PubMed ID: 23257200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy dependence of a scintillating fiber detector for preclinical dosimetry with an image guided micro-irradiator.
    Le Deroff C; Frelin AM; Ledoux X
    Phys Med Biol; 2019 May; 64(11):115015. PubMed ID: 30974415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton beam dosimetry: a comparison between a plastic scintillator, ionization chamber and Faraday cup.
    Ghergherehchi M; Afarideh H; Ghannadi M; Mohammadzadeh A; Aslani GR; Boghrati B
    J Radiat Res; 2010; 51(4):423-30. PubMed ID: 20679742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography.
    Kroll F; Pawelke J; Karsch L
    Med Phys; 2013 Aug; 40(8):082104. PubMed ID: 23927341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerrow: A probe-format graphite calorimeter for absolute dosimetry of high-energy photon beams in the clinical environment.
    Renaud J; Sarfehnia A; Bancheri J; Seuntjens J
    Med Phys; 2018 Jan; 45(1):414-428. PubMed ID: 29131344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A small-body portable graphite calorimeter for dosimetry in low-energy clinical proton beams.
    Palmans H; Thomas R; Simon M; Duane S; Kacperek A; DuSautoy A; Verhaegen F
    Phys Med Biol; 2004 Aug; 49(16):3737-49. PubMed ID: 15446802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range.
    Lessard F; Archambault L; Plamondon M; Despres P; Therriault-Proulx F; Beddar S; Beaulieu L
    Med Phys; 2012 Sep; 39(9):5308-16. PubMed ID: 22957599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.