BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32526813)

  • 1. PGRL1 overexpression in Phaeodactylum tricornutum inhibits growth and reduces apparent PSII activity.
    Zhou L; Gao S; Wu S; Han D; Wang H; Gu W; Hu Q; Wang J; Wang G
    Plant J; 2020 Aug; 103(5):1850-1857. PubMed ID: 32526813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of regulation of photosystem I cross-section in the pennate diatom Phaeodactylum tricornutum.
    Giovagnetti V; Ruban AV
    J Exp Bot; 2021 Feb; 72(2):561-575. PubMed ID: 33068431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage.
    Tikkanen M; Mekala NR; Aro EM
    Biochim Biophys Acta; 2014 Jan; 1837(1):210-5. PubMed ID: 24161359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes.
    Veith T; Büchel C
    Biochim Biophys Acta; 2007 Dec; 1767(12):1428-35. PubMed ID: 18028870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hunting the main player enabling Chlamydomonas reinhardtii growth under fluctuating light.
    Jokel M; Johnson X; Peltier G; Aro EM; Allahverdiyeva Y
    Plant J; 2018 Jun; 94(5):822-835. PubMed ID: 29575329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic electron flow modulate the linear electron flow and reactive oxygen species in tomato leaves under high temperature.
    Lu J; Yin Z; Lu T; Yang X; Wang F; Qi M; Li T; Liu Y
    Plant Sci; 2020 Mar; 292():110387. PubMed ID: 32005392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PROTON GRADIENT REGULATION 5 supports linear electron flow to oxidize photosystem I.
    Takagi D; Miyake C
    Physiol Plant; 2018 Nov; 164(3):337-348. PubMed ID: 29604096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii.
    Dang KV; Plet J; Tolleter D; Jokel M; Cuiné S; Carrier P; Auroy P; Richaud P; Johnson X; Alric J; Allahverdiyeva Y; Peltier G
    Plant Cell; 2014 Jul; 26(7):3036-50. PubMed ID: 24989042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthesis acclimation under severely fluctuating light conditions allows faster growth of diatoms compared with dinoflagellates.
    Zhou L; Wu S; Gu W; Wang L; Wang J; Gao S; Wang G
    BMC Plant Biol; 2021 Apr; 21(1):164. PubMed ID: 33794787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations in the first steps of photosynthesis for the diatom Cyclotella meneghiniana grown under different light conditions.
    Chukhutsina VU; Büchel C; van Amerongen H
    Biochim Biophys Acta; 2013 Jan; 1827(1):10-8. PubMed ID: 23036902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action Spectrum of Photoinhibition in the Diatom Phaeodactylum tricornutum.
    Havurinne V; Tyystjärvi E
    Plant Cell Physiol; 2017 Dec; 58(12):2217-2225. PubMed ID: 29059446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum.
    Giovagnetti V; Ruban AV
    Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of iron on the growth of Phaeodactylum tricornutum via photosynthesis.
    Zhao P; Gu W; Huang A; Wu S; Liu C; Huan L; Gao S; Xie X; Wang G
    J Phycol; 2018 Feb; 54(1):34-43. PubMed ID: 29159944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosystem II repair in marine diatoms with contrasting photophysiologies.
    Lavaud J; Six C; Campbell DA
    Photosynth Res; 2016 Feb; 127(2):189-99. PubMed ID: 26156125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated air temperature damage to photosynthetic apparatus alleviated by enhanced cyclic electron flow around photosystem I in tobacco leaves.
    Yanhui C; Hongrui W; Beining Z; Shixing G; Zihan W; Yue W; Huihui Z; Guangyu S
    Ecotoxicol Environ Saf; 2020 Nov; 204():111136. PubMed ID: 32798755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I.
    Shikanai T
    Photosynth Res; 2016 Sep; 129(3):253-60. PubMed ID: 26858094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The singular properties of photosynthetic cytochrome c
    Bernal-Bayard P; Álvarez C; Calvo P; Castell C; Roncel M; Hervás M; Navarro JA
    Physiol Plant; 2019 May; 166(1):199-210. PubMed ID: 30499233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in excitation relaxation of diatoms in response to fluctuating light, probed by fluorescence spectroscopies.
    Tanabe M; Ueno Y; Yokono M; Shen JR; Nagao R; Akimoto S
    Photosynth Res; 2020 Dec; 146(1-3):143-150. PubMed ID: 32067138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel structural aspect of the diatom thylakoid membrane: lateral segregation of photosystem I under red-enhanced illumination.
    Bína D; Herbstová M; Gardian Z; Vácha F; Litvín R
    Sci Rep; 2016 May; 6():25583. PubMed ID: 27149693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectivity among Photosystem II centers in phytoplankters: Patterns and responses.
    Xu K; Grant-Burt JL; Donaher N; Campbell DA
    Biochim Biophys Acta Bioenerg; 2017 Jun; 1858(6):459-474. PubMed ID: 28315315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.