These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 32526825)
1. Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging. Dahiya R; Mohammad T; Alajmi MF; Rehman MT; Hasan GM; Hussain A; Hassan MI Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32526825 [TBL] [Abstract][Full Text] [Related]
2. The yeast replicative aging model. He C; Zhou C; Kennedy BK Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt A):2690-2696. PubMed ID: 29524633 [TBL] [Abstract][Full Text] [Related]
3. Genetic approaches to aging in budding and fission yeasts: new connections and new opportunities. Chen BR; Runge KW Subcell Biochem; 2012; 57():291-314. PubMed ID: 22094427 [TBL] [Abstract][Full Text] [Related]
4. Yeast aging research: recent advances and medical relevance. Sinclair DA Cell Mol Life Sci; 1999 Nov; 56(9-10):807-16. PubMed ID: 11212340 [TBL] [Abstract][Full Text] [Related]
5. Proteostatic stress as a nodal hallmark of replicative aging. Moreno DF; Aldea M Exp Cell Res; 2020 Sep; 394(2):112163. PubMed ID: 32640194 [TBL] [Abstract][Full Text] [Related]
6. Measuring the Replicative Lifespan of Saccharomyces cerevisiae Using the HYAA Microfluidic Platform. Yu R; Jo MC; Dang W Methods Mol Biol; 2020; 2144():1-6. PubMed ID: 32410020 [TBL] [Abstract][Full Text] [Related]
7. Simulated microgravity accelerates aging in Saccharomyces cerevisiae. Fukuda APM; Camandona VL; Francisco KJM; Rios-Anjos RM; Lucio do Lago C; Ferreira-Junior JR Life Sci Space Res (Amst); 2021 Feb; 28():32-40. PubMed ID: 33612178 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast. Mohammad K; Baratang Junio JA; Tafakori T; Orfanos E; Titorenko VI Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630624 [TBL] [Abstract][Full Text] [Related]
9. Trajectories of Aging: How Systems Biology in Yeast Can Illuminate Mechanisms of Personalized Aging. Crane MM; Chen KL; Blue BW; Kaeberlein M Proteomics; 2020 Mar; 20(5-6):e1800420. PubMed ID: 31385433 [TBL] [Abstract][Full Text] [Related]
10. Paradigms and pitfalls of yeast longevity research. Sinclair DA Mech Ageing Dev; 2002 Apr; 123(8):857-67. PubMed ID: 12044934 [TBL] [Abstract][Full Text] [Related]
11. Estimating network changes from lifespan measurements using a parsimonious gene network model of cellular aging. Qin H BMC Bioinformatics; 2019 Nov; 20(1):599. PubMed ID: 31747877 [TBL] [Abstract][Full Text] [Related]
12. Yeast replicative aging: a paradigm for defining conserved longevity interventions. Wasko BM; Kaeberlein M FEMS Yeast Res; 2014 Feb; 14(1):148-59. PubMed ID: 24119093 [TBL] [Abstract][Full Text] [Related]
15. Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Oliveira AV; Vilaça R; Santos CN; Costa V; Menezes R Biogerontology; 2017 Feb; 18(1):3-34. PubMed ID: 27804052 [TBL] [Abstract][Full Text] [Related]
16. The integrated stress response in budding yeast lifespan extension. Postnikoff SDL; Johnson JE; Tyler JK Microb Cell; 2017 Oct; 4(11):368-375. PubMed ID: 29167799 [TBL] [Abstract][Full Text] [Related]
17. The budding yeast Saccharomyces cerevisiae as a model organism: possible implications for gerontological studies. Bilinski T; Bylak A; Zadrag-Tecza R Biogerontology; 2017 Aug; 18(4):631-640. PubMed ID: 28573416 [TBL] [Abstract][Full Text] [Related]
18. Rapid Nuclear Exclusion of Hcm1 in Aging Ghavidel A; Baxi K; Prusinkiewicz M; Swan C; Belak ZR; Eskiw CH; Carvalho CE; Harkness TA G3 (Bethesda); 2018 May; 8(5):1579-1592. PubMed ID: 29519938 [TBL] [Abstract][Full Text] [Related]
19. Yeast as a tool to identify anti-aging compounds. Zimmermann A; Hofer S; Pendl T; Kainz K; Madeo F; Carmona-Gutierrez D FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29905792 [TBL] [Abstract][Full Text] [Related]