These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 32526825)

  • 21. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.
    Wuttke D; Connor R; Vora C; Craig T; Li Y; Wood S; Vasieva O; Shmookler Reis R; Tang F; de Magalhães JP
    PLoS Genet; 2012; 8(8):e1002834. PubMed ID: 22912585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new mechanistic insight into fate decisions during yeast cell aging process.
    Feng MW; Adams PD
    Mech Ageing Dev; 2021 Sep; 198():111542. PubMed ID: 34273382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Communications between Mitochondria, the Nucleus, Vacuoles, Peroxisomes, the Endoplasmic Reticulum, the Plasma Membrane, Lipid Droplets, and the Cytosol during Yeast Chronological Aging.
    Dakik P; Titorenko VI
    Front Genet; 2016; 7():177. PubMed ID: 27729926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enrichment of aging yeast cells and budding polarity assay in
    Yang EJ; Pon LA
    STAR Protoc; 2022 Sep; 3(3):101599. PubMed ID: 35928001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronological aging-induced apoptosis in yeast.
    Fabrizio P; Longo VD
    Biochim Biophys Acta; 2008 Jul; 1783(7):1280-5. PubMed ID: 18445486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions.
    Garay E; Campos SE; González de la Cruz J; Gaspar AP; Jinich A; Deluna A
    PLoS Genet; 2014 Feb; 10(2):e1004168. PubMed ID: 24586198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A high-throughput microfluidic diploid yeast long-term culturing (DYLC) chip capable of bud reorientation and concerted daughter dissection for replicative lifespan determination.
    Wang Y; Zhu Z; Liu K; Xiao Q; Geng Y; Xu F; Ouyang S; Zheng K; Fan Y; Jin N; Zhao X; Marchisio MA; Pan D; Huang QA
    J Nanobiotechnology; 2022 Mar; 20(1):171. PubMed ID: 35361237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aging and longevity genes.
    Jazwinski SM
    Acta Biochim Pol; 2000; 47(2):269-79. PubMed ID: 11051192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Some highlights of research on aging with invertebrates, 2010.
    Partridge L
    Aging Cell; 2011 Feb; 10(1):5-9. PubMed ID: 21078113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Depletion of Limiting rDNA Structural Complexes Triggers Chromosomal Instability and Replicative Aging of
    Fine RD; Maqani N; Li M; Franck E; Smith JS
    Genetics; 2019 May; 212(1):75-91. PubMed ID: 30842210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA replication stress, genome instability and aging.
    Burhans WC; Weinberger M
    Nucleic Acids Res; 2007; 35(22):7545-56. PubMed ID: 18055498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review.
    Gershon H; Gershon D
    Mech Ageing Dev; 2000 Dec; 120(1-3):1-22. PubMed ID: 11087900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biology of Healthy Aging and Longevity.
    Carmona JJ; Michan S
    Rev Invest Clin; 2016; 68(1):7-16. PubMed ID: 27028172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae.
    Odoh CK; Guo X; Arnone JT; Wang X; Zhao ZK
    Biogerontology; 2022 Apr; 23(2):169-199. PubMed ID: 35260986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiomics Approach to Novel Therapeutic Targets for Cancer and Aging-Related Diseases: Role of Sld7 in Yeast Aging Network.
    Dayan IE; Arga KY; Ulgen KO
    OMICS; 2017 Feb; 21(2):100-113. PubMed ID: 28118095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large-scale identification in yeast of conserved ageing genes.
    Kaeberlein M; Kennedy BK
    Mech Ageing Dev; 2005 Jan; 126(1):17-21. PubMed ID: 15610758
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of yeast sirtuins by NAD(+) metabolism and calorie restriction.
    Lu SP; Lin SJ
    Biochim Biophys Acta; 2010 Aug; 1804(8):1567-75. PubMed ID: 19818879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional genomics of dietary restriction and longevity in yeast.
    Campos SE; DeLuna A
    Mech Ageing Dev; 2019 Apr; 179():36-43. PubMed ID: 30790575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging roles for sphingolipids in cellular aging.
    Singh P; Li R
    Curr Genet; 2018 Aug; 64(4):761-767. PubMed ID: 29260307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide analysis of yeast aging.
    Sutphin GL; Olsen BA; Kennedy BK; Kaeberlein M
    Subcell Biochem; 2012; 57():251-89. PubMed ID: 22094426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.