These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 32526825)

  • 41. The role of autophagy in the regulation of yeast life span.
    Tyler JK; Johnson JE
    Ann N Y Acad Sci; 2018 Apr; 1418(1):31-43. PubMed ID: 29363766
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Yeast at the Forefront of Research on Ageing and Age-Related Diseases.
    Sampaio-Marques B; Burhans WC; Ludovico P
    Prog Mol Subcell Biol; 2019; 58():217-242. PubMed ID: 30911895
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pterocarpus marsupium extract extends replicative lifespan in budding yeast.
    Lee MB; Kiflezghi MG; Tsuchiya M; Wasko B; Carr DT; Uppal PA; Grayden KA; Elala YC; Nguyen TA; Wang J; Ragosti P; Nguyen S; Zhao YT; Kim D; Thon S; Sinha I; Tang TT; Tran NHB; Tran THB; Moore MD; Li MAK; Rodriguez K; Promislow DEL; Kaeberlein M
    Geroscience; 2021 Oct; 43(5):2595-2609. PubMed ID: 34297314
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of gene expression profile in yeast aging chronologically.
    Fabrizio P; Li L; Longo VD
    Mech Ageing Dev; 2005 Jan; 126(1):11-6. PubMed ID: 15610757
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast.
    Molon M; Szajwaj M; Tchorzewski M; Skoczowski A; Niewiadomska E; Zadrag-Tecza R
    Age (Dordr); 2016 Feb; 38(1):11. PubMed ID: 26783001
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.
    Howitz KT; Bitterman KJ; Cohen HY; Lamming DW; Lavu S; Wood JG; Zipkin RE; Chung P; Kisielewski A; Zhang LL; Scherer B; Sinclair DA
    Nature; 2003 Sep; 425(6954):191-6. PubMed ID: 12939617
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evidence for the hallmarks of human aging in replicatively aging yeast.
    Janssens GE; Veenhoff LM
    Microb Cell; 2016 Jun; 3(7):263-274. PubMed ID: 28357364
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The genetics of aging in the yeast Saccharomyces cerevisiae.
    Jazwinski SM
    Genetica; 1993; 91(1-3):35-51. PubMed ID: 8125278
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sound silencing: the Sir2 protein and cellular senescence.
    Defossez PA; Lin SJ; McNabb DS
    Bioessays; 2001 Apr; 23(4):327-32. PubMed ID: 11268038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Replicative aging in yeast: the means to the end.
    Steinkraus KA; Kaeberlein M; Kennedy BK
    Annu Rev Cell Dev Biol; 2008; 24():29-54. PubMed ID: 18616424
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Is the yeast a relevant model for aging of multicellular organisms? An insight from the total lifespan of Saccharomyces cerevisiae.
    Zadrag R; Bartosz G; Bilinski T
    Curr Aging Sci; 2008 Dec; 1(3):159-65. PubMed ID: 20021387
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changed life course upon defective replication of ribosomal RNA genes.
    Hattori M; Horigome C; Aspert T; Charvin G; Kobayashi T
    Genes Genet Syst; 2023 Apr; 97(6):285-295. PubMed ID: 36858512
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increased fidelity of protein synthesis extends lifespan.
    Martinez-Miguel VE; Lujan C; Espie-Caullet T; Martinez-Martinez D; Moore S; Backes C; Gonzalez S; Galimov ER; Brown AEX; Halic M; Tomita K; Rallis C; von der Haar T; Cabreiro F; Bjedov I
    Cell Metab; 2021 Nov; 33(11):2288-2300.e12. PubMed ID: 34525330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular mechanisms linking the evolutionary conserved TORC1-Sch9 nutrient signalling branch to lifespan regulation in Saccharomyces cerevisiae.
    Swinnen E; Ghillebert R; Wilms T; Winderickx J
    FEMS Yeast Res; 2014 Feb; 14(1):17-32. PubMed ID: 24102693
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans.
    Barbieri M; Bonafè M; Franceschi C; Paolisso G
    Am J Physiol Endocrinol Metab; 2003 Nov; 285(5):E1064-71. PubMed ID: 14534077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Senescence and apoptosis in yeast mother cell-specific aging and in higher cells: a short review.
    Laun P; Heeren G; Rinnerthaler M; Rid R; Kössler S; Koller L; Breitenbach M
    Biochim Biophys Acta; 2008 Jul; 1783(7):1328-34. PubMed ID: 18342634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The chronological life span of Saccharomyces cerevisiae.
    Fabrizio P; Longo VD
    Methods Mol Biol; 2007; 371():89-95. PubMed ID: 17634576
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The shortened replicative life span of prohibitin mutants of yeast appears to be due to defective mitochondrial segregation in old mother cells.
    Piper PW; Jones GW; Bringloe D; Harris N; MacLean M; Mollapour M
    Aging Cell; 2002 Dec; 1(2):149-57. PubMed ID: 12882345
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spt4 promotes cellular senescence by activating non-coding RNA transcription in ribosomal RNA gene clusters.
    Yokoyama M; Sasaki M; Kobayashi T
    Cell Rep; 2023 Jan; 42(1):111944. PubMed ID: 36640349
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Caloric restriction delays yeast chronological aging by remodeling carbohydrate and lipid metabolism, altering peroxisomal and mitochondrial functionalities, and postponing the onsets of apoptotic and liponecrotic modes of regulated cell death.
    Arlia-Ciommo A; Leonov A; Beach A; Richard VR; Bourque SD; Burstein MT; Kyryakov P; Gomez-Perez A; Koupaki O; Feldman R; Titorenko VI
    Oncotarget; 2018 Mar; 9(22):16163-16184. PubMed ID: 29662634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.