These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
551 related articles for article (PubMed ID: 32526888)
1. Combined PARP Inhibition and Immune Checkpoint Therapy in Solid Tumors. Peyraud F; Italiano A Cancers (Basel); 2020 Jun; 12(6):. PubMed ID: 32526888 [TBL] [Abstract][Full Text] [Related]
2. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Hunia J; Gawalski K; Szredzka A; Suskiewicz MJ; Nowis D Front Mol Biosci; 2022; 9():1073797. PubMed ID: 36533080 [TBL] [Abstract][Full Text] [Related]
3. Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic. Cerrato A; Morra F; Celetti A J Exp Clin Cancer Res; 2016 Nov; 35(1):179. PubMed ID: 27884198 [TBL] [Abstract][Full Text] [Related]
4. The Synergistic Effect of PARP Inhibitors and Immune Checkpoint Inhibitors. Wu Z; Cui P; Tao H; Zhang S; Ma J; Liu Z; Wang J; Qian Y; Chen S; Huang Z; Zheng X; Huang D; Hu Y Clin Med Insights Oncol; 2021; 15():1179554921996288. PubMed ID: 33737855 [TBL] [Abstract][Full Text] [Related]
5. Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Franzese O; Graziani G Cancers (Basel); 2022 Nov; 14(22):. PubMed ID: 36428727 [TBL] [Abstract][Full Text] [Related]
6. The PARP1 selective inhibitor saruparib (AZD5305) elicits potent and durable antitumor activity in patient-derived BRCA1/2-associated cancer models. Herencia-Ropero A; Llop-Guevara A; Staniszewska AD; Domènech-Vivó J; García-Galea E; Moles-Fernández A; Pedretti F; Domènech H; Rodríguez O; Guzmán M; Arenas EJ; Verdaguer H; Calero-Nieto FJ; Talbot S; Tobalina L; Leo E; Lau A; Nuciforo P; Dienstmann R; Macarulla T; Arribas J; Díez O; Gutiérrez-Enríquez S; Forment JV; O'Connor MJ; Albertella M; Balmaña J; Serra V Genome Med; 2024 Aug; 16(1):107. PubMed ID: 39187844 [TBL] [Abstract][Full Text] [Related]
7. Alternate therapeutic pathways for PARP inhibitors and potential mechanisms of resistance. Kim DS; Camacho CV; Kraus WL Exp Mol Med; 2021 Jan; 53(1):42-51. PubMed ID: 33487630 [TBL] [Abstract][Full Text] [Related]
8. Improving PARP inhibitor efficacy in high-grade serous ovarian carcinoma: A focus on the immune system. Bound NT; Vandenberg CJ; Kartikasari AER; Plebanski M; Scott CL Front Genet; 2022; 13():886170. PubMed ID: 36159999 [TBL] [Abstract][Full Text] [Related]
9. Combining inhibition of immune checkpoints and PARP: rationale and perspectives in cancer treatment. Catalano M; Francesco Iannone L; Cosso F; Generali D; Mini E; Roviello G Expert Opin Ther Targets; 2022 Nov; 26(11):923-936. PubMed ID: 36519314 [TBL] [Abstract][Full Text] [Related]
10. New Targeted Agents in Gynecologic Cancers: Synthetic Lethality, Homologous Recombination Deficiency, and PARP Inhibitors. Liu FW; Tewari KS Curr Treat Options Oncol; 2016 Mar; 17(3):12. PubMed ID: 26931795 [TBL] [Abstract][Full Text] [Related]
11. PARP inhibitors in head and neck cancer: Molecular mechanisms, preclinical and clinical data. Moutafi M; Economopoulou P; Rimm D; Psyrri A Oral Oncol; 2021 Jun; 117():105292. PubMed ID: 33862558 [TBL] [Abstract][Full Text] [Related]
12. Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. Padella A; Ghelli Luserna Di Rorà A; Marconi G; Ghetti M; Martinelli G; Simonetti G J Hematol Oncol; 2022 Jan; 15(1):10. PubMed ID: 35065680 [TBL] [Abstract][Full Text] [Related]
13. The Molecular Mechanisms of Actions, Effects, and Clinical Implications of PARP Inhibitors in Epithelial Ovarian Cancers: A Systematic Review. Lau CH; Seow KM; Chen KH Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897700 [TBL] [Abstract][Full Text] [Related]
14. Combined strategies with PARP inhibitors for the treatment of BRCA wide type cancer. Xie Y; Xiao D; Li D; Peng M; Peng W; Duan H; Yang X Front Oncol; 2024; 14():1441222. PubMed ID: 39156700 [TBL] [Abstract][Full Text] [Related]
15. Role of BRCA Mutations in Cancer Treatment with Poly(ADP-ribose) Polymerase (PARP) Inhibitors. Faraoni I; Graziani G Cancers (Basel); 2018 Dec; 10(12):. PubMed ID: 30518089 [TBL] [Abstract][Full Text] [Related]
16. Therapeutic targeting of PARP with immunotherapy in acute myeloid leukemia. Bian X; Liu W; Yang K; Sun C Front Pharmacol; 2024; 15():1421816. PubMed ID: 39175540 [TBL] [Abstract][Full Text] [Related]
17. Update on Poly-ADP-ribose polymerase inhibition for ovarian cancer treatment. Papa A; Caruso D; Strudel M; Tomao S; Tomao F J Transl Med; 2016 Sep; 14():267. PubMed ID: 27634150 [TBL] [Abstract][Full Text] [Related]
18. PARP Inhibitors in Advanced Prostate Cancer in Tumors with DNA Damage Signatures. McNevin CS; Cadoo K; Baird AM; Finn SP; McDermott R Cancers (Basel); 2022 Sep; 14(19):. PubMed ID: 36230674 [TBL] [Abstract][Full Text] [Related]
19. Targeted Combination of Poly(ADP-ribose) Polymerase Inhibitors and Immune Checkpoint Inhibitors Lacking Evidence of Benefit: Focus in Ovarian Cancer. Bailey M; Morand S; Royfman R; Lin L; Singh A; Stanbery L; Walter A; Hamouda D; Nemunaitis J Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542143 [TBL] [Abstract][Full Text] [Related]
20. Targeting PARP1 to Enhance Anticancer Checkpoint Immunotherapy Response: Rationale and Clinical Implications. Wanderley CWS; Correa TS; Scaranti M; Cunha FQ; Barroso-Sousa R Front Immunol; 2022; 13():816642. PubMed ID: 35572596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]