These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32526958)

  • 1. Reducing Variability and Removing Natural Light from Nighttime Satellite Imagery: A Case Study Using the VIIRS DNB.
    Coesfeld J; Kuester T; Kuechly HU; Kyba CCM
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32526958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved algorithm for determining the Visible Infrared Imaging Radiometer Suite Day/Night Band high-gain stage dark offset free from light contamination.
    Gu Y; Uprety S; Blonski S; Zhang B; Cao C
    Appl Opt; 2019 Feb; 58(6):1400-1407. PubMed ID: 30874024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping and Tracking Forest Burnt Areas in the Indio Maiz Biological Reserve Using Sentinel-3 SLSTR and VIIRS-DNB Imagery.
    Chiang SH; Ulloa NI
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data.
    Hu Z; Hu H; Huang Y
    Environ Pollut; 2018 Aug; 239():30-42. PubMed ID: 29649758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.
    Ou J; Liu X; Li X; Li M; Li W
    PLoS One; 2015; 10(9):e0138310. PubMed ID: 26390037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.
    Wang M
    Opt Express; 2016 May; 24(11):12414-29. PubMed ID: 27410156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Majority of artificially lit Earth surface associated with the non-urban population.
    Cox DTC; Sánchez de Miguel A; Bennie J; Dzurjak SA; Gaston KJ
    Sci Total Environ; 2022 Oct; 841():156782. PubMed ID: 35724779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retrieval of nighttime aerosol optical depth by simultaneous consideration of artificial and natural light sources.
    Meng Y; Zhou J; Wang Z; Tang W; Ma J; Zhang T; Long Z
    Sci Total Environ; 2023 Oct; 896():166354. PubMed ID: 37595924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential for nocturnal satellite detection of suspended matter concentrations in coastal waters using a panchromatic band: a feasibility study based on VIIRS (NASA/NOAA) spectral and radiometric specifications.
    Chami M; Larnicol M; Migeon S; Minghelli A; Mathieu S
    Opt Express; 2020 May; 28(10):15314-15330. PubMed ID: 32403562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of the diffuse light near cities detected in nighttime satellite imagery.
    Sanchez de Miguel A; Kyba CCM; Zamorano J; Gallego J; Gaston KJ
    Sci Rep; 2020 May; 10(1):7829. PubMed ID: 32385403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Transition from MODIS to VIIRS for Global Volcano Thermal Monitoring.
    Campus A; Laiolo M; Massimetti F; Coppola D
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities.
    Miller SD; Mills SP; Elvidge CD; Lindsey DT; Lee TF; Hawkins JD
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15706-11. PubMed ID: 22984179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution.
    Jiang W; He G; Long T; Guo H; Yin R; Leng W; Liu H; Wang G
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a combination of nighttime light and MODIS data to estimate spatiotemporal patterns of CO
    Guo W; Li Y; Li P; Zhao X; Zhang J
    Sci Total Environ; 2022 Nov; 848():157630. PubMed ID: 35901869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.
    Wang M; Shi W; Jiang L; Voss K
    Opt Express; 2016 Sep; 24(18):20437-53. PubMed ID: 27607649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technique for monitoring performance of VIIRS reflective solar bands for ocean color data processing.
    Wang M; Shi W; Jiang L; Liu X; Son S; Voss K
    Opt Express; 2015 Jun; 23(11):14446-60. PubMed ID: 26072806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid assessment of cyclone damage using NPP-VIIRS DNB and ancillary data.
    Sarkar S
    Nat Hazards (Dordr); 2021; 106(1):579-593. PubMed ID: 33424122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of human activity intensity on habitat quality based on nighttime light remote sensing: A case study of Northern Shaanxi, China.
    Zhao Y; Qu Z; Zhang Y; Ao Y; Han L; Kang S; Sun Y
    Sci Total Environ; 2022 Dec; 851(Pt 1):158037. PubMed ID: 35981576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery.
    Li X; Zhao L; Li D; Xu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NOAA-20 VIIRS polarization effect and its correction.
    Sun J; Wang M; Jiang L; Xiong X
    Appl Opt; 2019 Aug; 58(24):6655-6665. PubMed ID: 31503597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.