These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 32527425)
41. Comparisons of Transcriptional Profiles of Gut Genes between Cry1Ab-Resistant and Susceptible Strains of Ostrinia nubilalis Revealed Genes Possibly Related to the Adaptation of Resistant Larvae to Transgenic Cry1Ab Corn. Yao J; Zhu YC; Lu N; Buschman LL; Zhu KY Int J Mol Sci; 2017 Jan; 18(2):. PubMed ID: 28146087 [TBL] [Abstract][Full Text] [Related]
42. The Cadherin Protein Is Not Involved in Susceptibility to Zhang J; Jin M; Yang Y; Liu L; Yang Y; Gómez I; Bravo A; Soberón M; Xiao Y; Liu K Toxins (Basel); 2020 Jun; 12(6):. PubMed ID: 32517191 [TBL] [Abstract][Full Text] [Related]
43. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. Monnerat R; Martins E; Macedo C; Queiroz P; Praça L; Soares CM; Moreira H; Grisi I; Silva J; Soberon M; Bravo A PLoS One; 2015; 10(4):e0119544. PubMed ID: 25830928 [TBL] [Abstract][Full Text] [Related]
45. Importance of Cry1 delta-endotoxin domain II loops for binding specificity in Heliothis virescens (L.). Jurat-Fuentes JL; Adang MJ Appl Environ Microbiol; 2001 Jan; 67(1):323-9. PubMed ID: 11133462 [TBL] [Abstract][Full Text] [Related]
46. Effects of two varieties of Bacillus thuringiensis maize on the biology of Plodia interpunctella. Gryspeirt A; Grégoire JC Toxins (Basel); 2012 May; 4(5):373-89. PubMed ID: 22778907 [TBL] [Abstract][Full Text] [Related]
47. Best Management Practices to Delay the Evolution of Bt Resistance in Lepidopteran Pests Without High Susceptibility to Bt Toxins in North America. Reisig DD; DiFonzo C; Dively G; Farhan Y; Gore J; Smith J J Econ Entomol; 2022 Feb; 115(1):10-25. PubMed ID: 34922393 [TBL] [Abstract][Full Text] [Related]
48. Use of Bacillus thuringiensis toxins for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Ibargutxi MA; Estela A; Ferré J; Caballero P Appl Environ Microbiol; 2006 Jan; 72(1):437-42. PubMed ID: 16391075 [TBL] [Abstract][Full Text] [Related]
49. Different binding sites for Bacillus thuringiensis Cry1Ba and Cry9Ca proteins in the European corn borer, Ostrinia nubilalis (Hübner). Hernández-Martínez P; Hernández-Rodríguez CS; Van Rie J; Escriche B; Ferré J J Invertebr Pathol; 2014 Jul; 120():1-3. PubMed ID: 24799046 [TBL] [Abstract][Full Text] [Related]
50. Leucine transport is affected by Bacillus thuringiensis Cry1 toxins in brush border membrane vesicles from Ostrinia nubilalis Hb (Lepidoptera: Pyralidae) and Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) midgut. Leonardi MG; Caccia S; González-Cabrera J; Ferré J; Giordana B J Membr Biol; 2006; 214(3):157-64. PubMed ID: 17558532 [TBL] [Abstract][Full Text] [Related]
51. Baseline susceptibility of the corn earworm (Lepidoptera: Noctuidae) to the Cry1Ab toxin from Bacillus thuringiensis. Siegfried BD; Spencer T; Nearman J J Econ Entomol; 2000 Aug; 93(4):1265-8. PubMed ID: 10985041 [TBL] [Abstract][Full Text] [Related]
52. Altered Glycosylation of 63- and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cry1 toxin binding, decreased pore formation, and increased resistance to Bacillus thuringiensis Cry1 toxins. Jurat-Fuentes JL; Gould FL; Adang MJ Appl Environ Microbiol; 2002 Nov; 68(11):5711-7. PubMed ID: 12406769 [TBL] [Abstract][Full Text] [Related]
54. An in-field screen for early detection and monitoring of insect resistance to Bacillus thuringiensis in transgenic crops. Venette RC; Hutchison WD; Andow DA J Econ Entomol; 2000 Aug; 93(4):1055-64. PubMed ID: 10985012 [TBL] [Abstract][Full Text] [Related]
55. Modeling the development of resistance by stalk-boring lepidopteran insects (Crambidae) in areas with transgenic corn and frequent insecticide use. Onstad DW; Guse CA; Porter P; Buschman LL; Higgins RA; Sloderbeck PE; Peairs FB; Cronholm GB J Econ Entomol; 2002 Oct; 95(5):1033-43. PubMed ID: 12403431 [TBL] [Abstract][Full Text] [Related]
57. Inheritance of resistance to the Cry1Ab Bacillus thuringiensis toxin in Ostrinia nubilalis (Lepidoptera: Crambidae). Alves AP; Spencer TA; Tabashnik BE; Siegfried BD J Econ Entomol; 2006 Apr; 99(2):494-501. PubMed ID: 16686152 [TBL] [Abstract][Full Text] [Related]
58. Alteration of a Cry1A Shared Binding Site in a Cry1Ab-Selected Colony of Pinos D; Wang Y; Hernández-Martínez P; He K; Ferré J Toxins (Basel); 2022 Jan; 14(1):. PubMed ID: 35051009 [TBL] [Abstract][Full Text] [Related]
59. Comparison of in vitro and in vivo binding site competition of Bacillus thuringiensis Cry1 proteins in two important maize pests. Hernández-Martínez P; Bretsnyder EC; Baum JA; Haas JA; Head GP; Jerga A; Ferré J Pest Manag Sci; 2022 Apr; 78(4):1457-1466. PubMed ID: 34951106 [TBL] [Abstract][Full Text] [Related]
60. Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Gouffon C; Van Vliet A; Van Rie J; Jansens S; Jurat-Fuentes JL Appl Environ Microbiol; 2011 May; 77(10):3182-8. PubMed ID: 21441333 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]