BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 32527935)

  • 1. Transcriptional repression of Myc underlies the tumour suppressor function of AGO1 in
    Zaytseva O; Mitchell NC; Guo L; Marshall OJ; Parsons LM; Hannan RD; Levens DL; Quinn LM
    Development; 2020 Jun; 147(11):. PubMed ID: 32527935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hfp inhibits Drosophila myc transcription and cell growth in a TFIIH/Hay-dependent manner.
    Mitchell NC; Johanson TM; Cranna NJ; Er AL; Richardson HE; Hannan RD; Quinn LM
    Development; 2010 Sep; 137(17):2875-84. PubMed ID: 20667914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.
    Pinder BD; Smibert CA
    EMBO Rep; 2013 Jan; 14(1):80-6. PubMed ID: 23184089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brk regulates wing disc growth in part via repression of Myc expression.
    Doumpas N; Ruiz-Romero M; Blanco E; Edgar B; Corominas M; Teleman AA
    EMBO Rep; 2013 Mar; 14(3):261-8. PubMed ID: 23337628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hfp, the Drosophila homolog of the mammalian c-myc transcriptional-repressor and tumor suppressor FIR, inhibits dmyc transcription and cell growth.
    Cranna NJ; Mitchell NC; Hannan RD; Quinn LM
    Fly (Austin); 2011; 5(2):129-33. PubMed ID: 21245665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila.
    Cernilogar FM; Onorati MC; Kothe GO; Burroughs AM; Parsi KM; Breiling A; Lo Sardo F; Saxena A; Miyoshi K; Siomi H; Siomi MC; Carninci P; Gilmour DS; Corona DF; Orlando V
    Nature; 2011 Nov; 480(7377):391-5. PubMed ID: 22056986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 3'-to-5' exoribonuclease Nibbler shapes the 3' ends of microRNAs bound to Drosophila Argonaute1.
    Han BW; Hung JH; Weng Z; Zamore PD; Ameres SL
    Curr Biol; 2011 Nov; 21(22):1878-87. PubMed ID: 22055293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smaug: an unexpected journey into the mechanisms of post-transcriptional regulation.
    Pinder BD; Smibert CA
    Fly (Austin); 2013; 7(3):142-5. PubMed ID: 23519205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of the target specificity of the RNA-binding protein HOW reveals dpp mRNA as a novel HOW target.
    Israeli D; Nir R; Volk T
    Development; 2007 Jun; 134(11):2107-14. PubMed ID: 17507411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drosophila Argonaute 1 and its miRNA biogenesis partners are required for oocyte formation and germline cell division.
    Azzam G; Smibert P; Lai EC; Liu JL
    Dev Biol; 2012 May; 365(2):384-94. PubMed ID: 22445511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The people behind the papers - Olga Zaytseva and Leonie Quinn.
    Development; 2020 Jun; 147(11):. PubMed ID: 32527936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the essential function of FBP/KSRP proteins: Drosophila Psi interacts with the mediator complex to modulate MYC transcription and tissue growth.
    Guo L; Zaysteva O; Nie Z; Mitchell NC; Amanda Lee JE; Ware T; Parsons L; Luwor R; Poortinga G; Hannan RD; Levens DL; Quinn LM
    Nucleic Acids Res; 2016 Sep; 44(16):7646-58. PubMed ID: 27207882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway.
    Miyoshi K; Okada TN; Siomi H; Siomi MC
    RNA; 2009 Jul; 15(7):1282-91. PubMed ID: 19451544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drosophila Myc is required for normal DREF gene expression.
    Thao DT; Seto H; Yamaguchi M
    Exp Cell Res; 2008 Jan; 314(1):184-92. PubMed ID: 17963749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells.
    Kim DH; Villeneuve LM; Morris KV; Rossi JJ
    Nat Struct Mol Biol; 2006 Sep; 13(9):793-7. PubMed ID: 16936726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The exoribonuclease Nibbler controls 3' end processing of microRNAs in Drosophila.
    Liu N; Abe M; Sabin LR; Hendriks GJ; Naqvi AS; Yu Z; Cherry S; Bonini NM
    Curr Biol; 2011 Nov; 21(22):1888-93. PubMed ID: 22055292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function.
    Xiong XP; Vogler G; Kurthkoti K; Samsonova A; Zhou R
    PLoS Genet; 2015 Aug; 11(8):e1005475. PubMed ID: 26308709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intertwined pathways for Argonaute-mediated microRNA biogenesis in Drosophila.
    Yang JS; Smibert P; Westholm JO; Jee D; Maurin T; Lai EC
    Nucleic Acids Res; 2014 Feb; 42(3):1987-2002. PubMed ID: 24220090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A potential link between transgene silencing and poly(A) tails.
    Siomi MC; Tsukumo H; Ishizuka A; Nagami T; Siomi H
    RNA; 2005 Jul; 11(7):1004-11. PubMed ID: 15987811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The elongin complex antagonizes the chromatin factor Corto for vein versus intervein cell identity in Drosophila wings.
    Rougeot J; Renard M; Randsholt NB; Peronnet F; Mouchel-Vielh E
    PLoS One; 2013; 8(10):e77592. PubMed ID: 24204884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.