These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32528026)

  • 1. Visualising spatio-temporal distributions of assimilated carbon translocation and release in root systems of leguminous plants.
    Yin YG; Suzui N; Kurita K; Miyoshi Y; Unno Y; Fujimaki S; Nakamura T; Shinano T; Kawachi N
    Sci Rep; 2020 Jun; 10(1):8446. PubMed ID: 32528026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation.
    Wang X; Tang C; Severi J; Butterly CR; Baldock JA
    New Phytol; 2016 Aug; 211(3):864-73. PubMed ID: 27101777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale.
    Pausch J; Kuzyakov Y
    Glob Chang Biol; 2018 Jan; 24(1):1-12. PubMed ID: 28752603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated CO
    Xu Q; Song X; Xu M; Xu Q; Liu Q; Tang C; Wang X; Yin W; Wang X
    Chemosphere; 2022 Dec; 308(Pt 2):136347. PubMed ID: 36087720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal solubility and speciation in the rhizosphere of Lupinus albus cluster roots.
    Dessureault-Rompré J; Nowack B; Schulin R; Tercier-Waeber ML; Luster J
    Environ Sci Technol; 2008 Oct; 42(19):7146-51. PubMed ID: 18939539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root hairs increase rhizosphere extension and carbon input to soil.
    Holz M; Zarebanadkouki M; Kuzyakov Y; Pausch J; Carminati A
    Ann Bot; 2018 Jan; 121(1):61-69. PubMed ID: 29267846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.
    Martínez-Alcalá I; Walker DJ; Bernal MP
    Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration.
    Wasaki J; Rothe A; Kania A; Neumann G; Römheld V; Shinano T; Osaki M; Kandeler E
    J Environ Qual; 2005; 34(6):2157-66. PubMed ID: 16275716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of root assimilated inorganic carbon on nitrogen acquisition/assimilation and carbon partitioning.
    Viktor A; Cramer MD
    New Phytol; 2005 Jan; 165(1):157-69. PubMed ID: 15720630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L.
    Mimmo T; Hann S; Jaitz L; Cesco S; Gessa CE; Puschenreiter M
    Plant Physiol Biochem; 2011 Nov; 49(11):1272-8. PubMed ID: 22000050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Lupinus albus L. root activities on As and Cu mobility after addition of iron-based soil amendments.
    Fresno T; Peñalosa JM; Santner J; Puschenreiter M; Moreno-Jiménez E
    Chemosphere; 2017 Sep; 182():373-381. PubMed ID: 28505579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of root uptake of
    Ota M; Tanaka T
    J Environ Radioact; 2019 May; 201():5-18. PubMed ID: 30721755
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) on the mobility of target elements for phytoremediation and phytomining in soil solution.
    Wiche O; Székely B; Kummer NA; Moschner C; Heilmeier H
    Int J Phytoremediation; 2016 Sep; 18(9):900-7. PubMed ID: 26940160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus.
    Houben D; Sonnet P
    Chemosphere; 2015 Nov; 139():644-51. PubMed ID: 25559173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaf wounding or simulated herbivory in young N. attenuata plants reduces carbon delivery to roots and root tips.
    Schmidt L; Hummel GM; Thiele B; Schurr U; Thorpe MR
    Planta; 2015 Apr; 241(4):917-28. PubMed ID: 25528149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.).
    Cheng L; Tang X; Vance CP; White PJ; Zhang F; Shen J
    J Exp Bot; 2014 Jul; 65(12):2995-3003. PubMed ID: 24723402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional visualization and quantification of water content in the rhizosphere.
    Moradi AB; Carminati A; Vetterlein D; Vontobel P; Lehmann E; Weller U; Hopmans JW; Vogel HJ; Oswald SE
    New Phytol; 2011 Nov; 192(3):653-63. PubMed ID: 21824150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulating behaviour of Lupinus albus L. growing in a normal and a decalcified calcic luvisol polluted with Zn.
    Pastor J; Hernández AJ; Prieto N; Fernández-Pascual M
    J Plant Physiol; 2003 Dec; 160(12):1457-65. PubMed ID: 14717438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative imaging of rhizosphere pH and CO2 dynamics with planar optodes.
    Blossfeld S; Schreiber CM; Liebsch G; Kuhn AJ; Hinsinger P
    Ann Bot; 2013 Jul; 112(2):267-76. PubMed ID: 23532048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and transcriptomic data highlight common features between iron and phosphorus acquisition mechanisms in white lupin roots.
    Venuti S; Zanin L; Marroni F; Franco A; Morgante M; Pinton R; Tomasi N
    Plant Sci; 2019 Aug; 285():110-121. PubMed ID: 31203875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.