These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32528269)

  • 1. Synaptic Diversity Suppresses Complex Collective Behavior in Networks of Theta Neurons.
    Lin L; Barreto E; So P
    Front Comput Neurosci; 2020; 14():44. PubMed ID: 32528269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroscopic complexity from an autonomous network of networks of theta neurons.
    Luke TB; Barreto E; So P
    Front Comput Neurosci; 2014; 8():145. PubMed ID: 25477811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete classification of the macroscopic behavior of a heterogeneous network of theta neurons.
    Luke TB; Barreto E; So P
    Neural Comput; 2013 Dec; 25(12):3207-34. PubMed ID: 24047318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact finite-dimensional description for networks of globally coupled spiking neurons.
    Pietras B; Cestnik R; Pikovsky A
    Phys Rev E; 2023 Feb; 107(2-1):024315. PubMed ID: 36932479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights.
    Nicola W; Tripp B; Scott M
    Front Comput Neurosci; 2016; 10():15. PubMed ID: 26973503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillations and collective excitability in a model of stochastic neurons under excitatory and inhibitory coupling.
    Lima Dias Pinto I; Copelli M
    Phys Rev E; 2019 Dec; 100(6-1):062416. PubMed ID: 31962449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population dynamics of the modified theta model: macroscopic phase reduction and bifurcation analysis link microscopic neuronal interactions to macroscopic gamma oscillation.
    Kotani K; Yamaguchi I; Yoshida L; Jimbo Y; Ermentrout GB
    J R Soc Interface; 2014 Jun; 11(95):20140058. PubMed ID: 24647906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcation analysis of the dynamics of interacting subnetworks of a spiking network.
    Lagzi F; Atay FM; Rotter S
    Sci Rep; 2019 Aug; 9(1):11397. PubMed ID: 31388027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network.
    Kim SY; Lim W
    Cogn Neurodyn; 2017 Oct; 11(5):395-413. PubMed ID: 29067129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization in hybrid neuronal networks of the hippocampal formation.
    Netoff TI; Banks MI; Dorval AD; Acker CD; Haas JS; Kopell N; White JA
    J Neurophysiol; 2005 Mar; 93(3):1197-208. PubMed ID: 15525802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlayer Connectivity Affects the Coherence Resonance and Population Activity Patterns in Two-Layered Networks of Excitatory and Inhibitory Neurons.
    Ristič D; Gosak M
    Front Comput Neurosci; 2022; 16():885720. PubMed ID: 35521427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Birth and destruction of collective oscillations in a network of two populations of coupled type 1 neurons.
    Jüttner B; Henriksen C; Martens EA
    Chaos; 2021 Feb; 31(2):023141. PubMed ID: 33653075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergent Dynamics and Spatio Temporal Patterns on Multiplex Neuronal Networks.
    Kumar Verma U; Ambika G
    Front Comput Neurosci; 2021; 15():774969. PubMed ID: 34924985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multiple timescales approach to bridging spiking- and population-level dynamics.
    Park Y; Ermentrout GB
    Chaos; 2018 Aug; 28(8):083123. PubMed ID: 30180602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The number of synaptic inputs and the synchrony of large, sparse neuronal networks.
    Golomb D; Hansel D
    Neural Comput; 2000 May; 12(5):1095-139. PubMed ID: 10905810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons.
    Ratas I; Pyragas K
    Phys Rev E; 2016 Sep; 94(3-1):032215. PubMed ID: 27739712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of degree distribution in shaping the dynamics in networks of sparsely connected spiking neurons.
    Roxin A
    Front Comput Neurosci; 2011; 5():8. PubMed ID: 21556129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopic phase resetting-curves determine oscillatory coherence and signal transfer in inter-coupled neural circuits.
    Dumont G; Gutkin B
    PLoS Comput Biol; 2019 May; 15(5):e1007019. PubMed ID: 31071085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm.
    Huh CY; Amilhon B; Ferguson KA; Manseau F; Torres-Platas SG; Peach JP; Scodras S; Mechawar N; Skinner FK; Williams S
    J Neurosci; 2016 Jun; 36(25):6605-22. PubMed ID: 27335395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.