These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32529189)

  • 1. Biocompatible and Biodegradable Functional Polysaccharides for Flexible Humidity Sensors.
    Wang L; Lou Z; Wang K; Zhao S; Yu P; Wei W; Wang D; Han W; Jiang K; Shen G
    Research (Wash D C); 2020; 2020():8716847. PubMed ID: 32529189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Smart Noncontact Control Systems with Ultrasensitive Humidity Sensors.
    Yang J; Shi R; Lou Z; Chai R; Jiang K; Shen G
    Small; 2019 Sep; 15(38):e1902801. PubMed ID: 31373177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable ion-conductive polyvinyl alcohol/okra polysaccharide composite films for fast-response respiratory monitoring sensors.
    Lao Y; Xiao S; Liu H; Li D; Wei Q; Li Z; Lu S
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126476. PubMed ID: 37625760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable humidity sensor based on porous graphene network for respiration monitoring.
    Pang Y; Jian J; Tu T; Yang Z; Ling J; Li Y; Wang X; Qiao Y; Tian H; Yang Y; Ren TL
    Biosens Bioelectron; 2018 Sep; 116():123-129. PubMed ID: 29879538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultrafast-response and flexible humidity sensor for human respiration monitoring and noncontact safety warning.
    Wang X; Deng Y; Chen X; Jiang P; Cheung YK; Yu H
    Microsyst Nanoeng; 2021; 7():99. PubMed ID: 34900333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferroelectric Polarization and Oxygen Vacancy Synergistically Induced an Ultrasensitive and Fast Humidity Sensor for Multifunctional Applications.
    Chen X; Liu C; Hua Z; Ma N
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36285769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Capacitive Humidity Sensors Based on Ionic Conductive Wood-Derived Cellulose Nanopapers.
    Wang Y; Hou S; Li T; Jin S; Shao Y; Yang H; Wu D; Dai S; Lu Y; Chen S; Huang J
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41896-41904. PubMed ID: 32829628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Response Polyelectrolyte Humidity Sensor for Respiration Monitoring.
    Dai J; Zhao H; Lin X; Liu S; Liu Y; Liu X; Fei T; Zhang T
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6483-6490. PubMed ID: 30672684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Sensitivity Wearable and Flexible Humidity Sensor Based on Graphene Oxide/Non-Woven Fabric for Respiration Monitoring.
    Wang Y; Zhang L; Zhang Z; Sun P; Chen H
    Langmuir; 2020 Aug; 36(32):9443-9448. PubMed ID: 32693594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin Glass-Based Flexible, Transparent, and Ultrasensitive Surface Acoustic Wave Humidity Sensor with ZnO Nanowires and Graphene Quantum Dots.
    Wu J; Yin C; Zhou J; Li H; Liu Y; Shen Y; Garner S; Fu Y; Duan H
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39817-39825. PubMed ID: 32805852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wafer-Level, High-Performance, Flexible Sensors Based on Organic Nanoforests for Human-Machine Interactions.
    Zhao Y; Chen G; Zhao Y; Li M; Zhang N; Wen J; Zhou N; Li S; Mao H; Huang C
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30793-30803. PubMed ID: 37307295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast-Response and Flexible Nanocrystal-Based Humidity Sensor for Monitoring Human Respiration and Water Evaporation on Skin.
    Kano S; Kim K; Fujii M
    ACS Sens; 2017 Jun; 2(6):828-833. PubMed ID: 28723119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance humidity sensor using Schottky-contacted SnS nanoflakes for noncontact healthcare monitoring.
    Tang H; Li Y; Ye H; Hu F; Gao C; Tao L; Tu T; Gou G; Chen X; Fan X; Ren T; Zhang G
    Nanotechnology; 2020 Jan; 31(5):055501. PubMed ID: 31484166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Uniform Water Microdroplets on Wrinkled Graphene for Ultrafast Humidity Sensing.
    Zhen Z; Li Z; Zhao X; Zhong Y; Zhang L; Chen Q; Yang T; Zhu H
    Small; 2018 Apr; 14(15):e1703848. PubMed ID: 29517135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin.
    Qiu J; Guo X; Chu R; Wang S; Zeng W; Qu L; Zhao Y; Yan F; Xing G
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40716-40725. PubMed ID: 31596567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-powered, flexible and remote-controlled breath monitor based on TiO
    Xiao Y; Shen D; Zou G; Wu A; Liu L; Duley WW; Zhou YN
    Nanotechnology; 2019 Aug; 30(32):325503. PubMed ID: 31013482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breathable Nanomesh Humidity Sensor for Real-Time Skin Humidity Monitoring.
    Jeong W; Song J; Bae J; Nandanapalli KR; Lee S
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44758-44763. PubMed ID: 31693333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development and characteristic evaluation of wireless sensor module for wound temperature and pressure].
    Zhang YH; Han B; Pan ZP; Zhang C; Xu XL; Li XY
    Zhonghua Shao Shang Za Zhi; 2020 Aug; 36(8):671-678. PubMed ID: 32829606
    [No Abstract]   [Full Text] [Related]  

  • 20. A Biodegradable and Stretchable Protein-Based Sensor as Artificial Electronic Skin for Human Motion Detection.
    Hou C; Xu Z; Qiu W; Wu R; Wang Y; Xu Q; Liu XY; Guo W
    Small; 2019 Mar; 15(11):e1805084. PubMed ID: 30690886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.