These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3252927)

  • 1. Determination of erythrocyte transit times through micropores. II-- Influence of experimental and physicochemical factors.
    Koutsouris D; Guillet R; Wenby RB; Meiselman HJ
    Biorheology; 1988; 25(5):773-90. PubMed ID: 3252927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of erythrocyte transit times through micropores. II. Influence of experimental and physicochemical factors.
    Koutsouris D; Guillet R; Wenby RB; Meiselman HJ
    Biorheology; 1989; 26(5):881-98. PubMed ID: 2620086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of erythrocyte transit times through micropores. I--Basic operational principles.
    Koutsouris D; Guillet R; Lelievre JC; Guillemin MT; Bertholom P; Beuzard Y; Boynard M
    Biorheology; 1988; 25(5):763-72. PubMed ID: 3252926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new micropore filtration approach to the analysis of white cell rheology.
    Moessmer G; Meiselman HJ
    Biorheology; 1990; 27(6):829-48. PubMed ID: 2093392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of suspending phase viscosity on the passage of red blood cells through capillary-size micropores.
    Fisher TC; Van Der Waart FJ; Meiselman HJ
    Biorheology; 1996; 33(2):153-68. PubMed ID: 8679962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Microfiltrometer (MicroFM): a new filtration device for the assessment of less deformable erythrocyte subpopulations.
    Amoussou-Guenou KM; Martinsen OG; Squitiero B; Rusch P; Healy JC
    Scand J Clin Lab Invest; 2004 Apr; 64(2):108-12. PubMed ID: 15115247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Cell Transit Analyser pulse height to study the deformation of erythrocytes in microchannels.
    Drochon A
    Med Eng Phys; 2005 Mar; 27(2):157-65. PubMed ID: 15642511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of glycemic control on red cell deformability determined by using the cell transit time analyzer.
    Rendell M; Fox M; Knox S; Lastovica J; Kirchain W; Meiselman HJ
    J Lab Clin Med; 1991 Jun; 117(6):500-4. PubMed ID: 2045718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The expression of red blood cell deformability in micropore filtration tests].
    Niu X; Yan Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):615-9. PubMed ID: 11791322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic principles for evaluation of less deformable erythrocyte subpopulations with the Microfiltrometer.
    Amoussou-Guenou KM; Martinsen OG; Hounkponou M; Doumit J; Healy JC
    Scand J Clin Lab Invest; 2004; 64(3):169-74. PubMed ID: 15222626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filterability of erythrocytes and whole blood in preterm and full-term neonates and adults.
    Linderkamp O; Hammer BJ; Miller R
    Pediatr Res; 1986 Dec; 20(12):1269-73. PubMed ID: 3797117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Micropore filters for measuring red blood cell deformability and their pore diameters].
    Niu X; Yan Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Sep; 18(3):466-9. PubMed ID: 11605518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulse shape analysis of RBC micropore flow via new software for the cell transit analyser (CTA).
    Fisher TC; Wenby RB; Meiselman HJ
    Biorheology; 1992; 29(2-3):185-201. PubMed ID: 1298440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of calcium permeabilization and membrane-attached hemoglobin on erythrocyte deformability.
    Friederichs E; Farley RA; Meiselman HJ
    Am J Hematol; 1992 Nov; 41(3):170-7. PubMed ID: 1415191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of red blood cell motion through cylindrical micropores: effects of cell properties.
    Secomb TW; Hsu R
    Biophys J; 1996 Aug; 71(2):1095-101. PubMed ID: 8842246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of human red blood cell deformability using a single micropore on a thin Si3N4 film.
    Ogura E; Abatti PJ; Moriizumi T
    IEEE Trans Biomed Eng; 1991 Aug; 38(8):721-6. PubMed ID: 1937504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of red cell mechanical properties on flow through single capillary-sized pores.
    Frank RS; Hochmuth RM
    J Biomech Eng; 1988 May; 110(2):155-60. PubMed ID: 3379936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red cell filterability determined using the cell transit time analyzer (CTTA): effects of ATP depletion and changes in calcium concentration.
    Rendell M; Luu T; Quinlan E; Knox S; Fox M; Kelly S; Kahler K
    Biochim Biophys Acta; 1992 Feb; 1133(3):293-300. PubMed ID: 1737062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human erythrocyte filterability at low driving pressure.
    Ginsbourg S; Levin S; Einav S; Korenstein R
    Clin Hemorheol Microcirc; 2009; 43(4):309-19. PubMed ID: 19996520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the red blood cell ability to traverse cylindrical pores.
    Abatti PJ
    IEEE Trans Biomed Eng; 1997 Mar; 44(3):209-12. PubMed ID: 9216134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.