These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 32529439)

  • 1. Silicone Chambers for Pollen Tube Imaging in Microstructured In Vitro Environments.
    Bertrand-Rakusová H; Chebli Y; Geitmann A
    Methods Mol Biol; 2020; 2160():211-221. PubMed ID: 32529439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-In Vivo Assay for Pollen Tube Attraction.
    Zhong S; Wang Z; Qu LJ
    Methods Mol Biol; 2020; 2160():83-92. PubMed ID: 32529430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restricted Pollination for Tracing Individual Pollen Tubes in a Pistil.
    Takahashi T; Mori T; Igawa T
    Methods Mol Biol; 2020; 2160():73-81. PubMed ID: 32529429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Growth Behavior and the Resulting Forces Applied by Pollen Tubes in a 3D Matrix.
    Reimann R; Kah D
    Methods Mol Biol; 2020; 2160():243-256. PubMed ID: 32529442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging and Analysis of the Content of Callose, Pectin, and Cellulose in the Cell Wall of Arabidopsis Pollen Tubes Grown In Vitro.
    Sede AR; Wengier DL; Borassi C; Estevez JM; Muschietti JP
    Methods Mol Biol; 2020; 2160():233-242. PubMed ID: 32529441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow Chamber Assay to Image the Response of FRET-Based Nanosensors in Pollen Tubes to Changes in Medium Composition.
    Reimann TM
    Methods Mol Biol; 2020; 2160():257-273. PubMed ID: 32529443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing Intracellular Gradients in Pollen Tubes.
    Damineli DSC; Portes MT; Feijó JA
    Methods Mol Biol; 2020; 2160():201-210. PubMed ID: 32529438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins.
    Cheung AY; Duan QH; Costa SS; de Graaf BH; Di Stilio VS; Feijo J; Wu HM
    Mol Plant; 2008 Jul; 1(4):686-702. PubMed ID: 19825573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LINC-complex mediated positioning of the vegetative nucleus is involved in calcium and ROS signaling in Arabidopsis pollen tubes.
    Moser M; Kirkpatrick A; Groves NR; Meier I
    Nucleus; 2020 Dec; 11(1):149-163. PubMed ID: 32631106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells.
    Agudelo CG; Sanati Nezhad A; Ghanbari M; Naghavi M; Packirisamy M; Geitmann A
    Plant J; 2013 Mar; 73(6):1057-68. PubMed ID: 23217059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internally Controlled Methods to Quantify Pollen Tube Growth and Penetration Defects in Arabidopsis thaliana.
    Smith DK; Wallace IS
    Methods Mol Biol; 2020; 2160():129-147. PubMed ID: 32529433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Arabidopsis AGC kinases are critical for the polarized growth of pollen tubes.
    Zhang Y; He J; McCormick S
    Plant J; 2009 May; 58(3):474-84. PubMed ID: 19144004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Galvanotropic Chamber for Controlled Reorientation of Pollen Tube Growth and Simultaneous Confocal Imaging of Intracellular Dynamics.
    Bou Daher F; Geitmann A
    Methods Mol Biol; 2020; 2160():191-200. PubMed ID: 32529437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Obtaining Mutant Pollen for Phenotypic Analysis and Pollen Tube Dual Staining.
    Zhong S; Wang Z; Qu LJ
    Methods Mol Biol; 2020; 2160():181-190. PubMed ID: 32529436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ultimate picture-the combination of live cell superresolution microscopy and single molecule tracking yields highest spatio-temporal resolution.
    Dersch S; Graumann PL
    Curr Opin Microbiol; 2018 Jun; 43():55-61. PubMed ID: 29227820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollen Tube Discharge Completes the Process of Synergid Degeneration That Is Initiated by Pollen Tube-Synergid Interaction in Arabidopsis.
    Leydon AR; Tsukamoto T; Dunatunga D; Qin Y; Johnson MA; Palanivelu R
    Plant Physiol; 2015 Sep; 169(1):485-96. PubMed ID: 26229050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of Mechanical Forces and Physiological Processes Involved in Pollen Tube Growth Using Microfluidics and Microrobotics.
    Burri JT; Munglani G; Nelson BJ; Grossniklaus U; Vogler H
    Methods Mol Biol; 2020; 2160():275-292. PubMed ID: 32529444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cajal bodies are developmentally regulated during pollen development and pollen tube growth in Arabidopsis thaliana.
    Scarpin R; Sigaut L; Pietrasanta L; McCormick S; Zheng B; Muschietti J
    Mol Plant; 2013 Jul; 6(4):1355-7. PubMed ID: 23699706
    [No Abstract]   [Full Text] [Related]  

  • 19. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth.
    Lassig R; Gutermuth T; Bey TD; Konrad KR; Romeis T
    Plant J; 2014 Apr; 78(1):94-106. PubMed ID: 24506280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane-bound RLCKs LIP1 and LIP2 are essential male factors controlling male-female attraction in Arabidopsis.
    Liu J; Zhong S; Guo X; Hao L; Wei X; Huang Q; Hou Y; Shi J; Wang C; Gu H; Qu LJ
    Curr Biol; 2013 Jun; 23(11):993-8. PubMed ID: 23684977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.