These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32529444)

  • 1. Quantification of Mechanical Forces and Physiological Processes Involved in Pollen Tube Growth Using Microfluidics and Microrobotics.
    Burri JT; Munglani G; Nelson BJ; Grossniklaus U; Vogler H
    Methods Mol Biol; 2020; 2160():275-292. PubMed ID: 32529444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feeling the force: how pollen tubes deal with obstacles.
    Burri JT; Vogler H; Läubli NF; Hu C; Grossniklaus U; Nelson BJ
    New Phytol; 2018 Oct; 220(1):187-195. PubMed ID: 29905972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device.
    Hu C; Munglani G; Vogler H; Ndinyanka Fabrice T; Shamsudhin N; Wittel FK; Ringli C; Grossniklaus U; Herrmann HJ; Nelson BJ
    Lab Chip; 2016 Dec; 17(1):82-90. PubMed ID: 27883138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massively Parallelized Pollen Tube Guidance and Mechanical Measurements on a Lab-on-a-Chip Platform.
    Shamsudhin N; Laeubli N; Atakan HB; Vogler H; Hu C; Haeberle W; Sebastian A; Grossniklaus U; Nelson BJ
    PLoS One; 2016; 11(12):e0168138. PubMed ID: 27977748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling.
    Sanati Nezhad A; Naghavi M; Packirisamy M; Bhat R; Geitmann A
    Proc Natl Acad Sci U S A; 2013 May; 110(20):8093-8. PubMed ID: 23630253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KATANIN-dependent mechanical properties of the stigmatic cell wall mediate the pollen tube path in Arabidopsis.
    Riglet L; Rozier F; Kodera C; Bovio S; Sechet J; Fobis-Loisy I; Gaude T
    Elife; 2020 Sep; 9():. PubMed ID: 32867920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-In Vivo Assay for Pollen Tube Attraction.
    Zhong S; Wang Z; Qu LJ
    Methods Mol Biol; 2020; 2160():83-92. PubMed ID: 32529430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells.
    Iwano M; Ngo QA; Entani T; Shiba H; Nagai T; Miyawaki A; Isogai A; Grossniklaus U; Takayama S
    Development; 2012 Nov; 139(22):4202-9. PubMed ID: 23093426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Growth Behavior and the Resulting Forces Applied by Pollen Tubes in a 3D Matrix.
    Reimann R; Kah D
    Methods Mol Biol; 2020; 2160():243-256. PubMed ID: 32529442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of microfluidics for studying growth mechanisms of tip growing pollen tubes.
    Nezhad AS; Packirisamy M; Geitmann A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6175-8. PubMed ID: 25571407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling.
    Prado AM; Colaço R; Moreno N; Silva AC; Feijó JA
    Mol Plant; 2008 Jul; 1(4):703-14. PubMed ID: 19825574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pollen tube: a soft shell with a hard core.
    Vogler H; Draeger C; Weber A; Felekis D; Eichenberger C; Routier-Kierzkowska AL; Boisson-Dernier A; Ringli C; Nelson BJ; Smith RS; Grossniklaus U
    Plant J; 2013 Feb; 73(4):617-27. PubMed ID: 23106269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional genomics of pollen tube-pistil interactions in Arabidopsis.
    Palanivelu R; Johnson MA
    Biochem Soc Trans; 2010 Apr; 38(2):593-7. PubMed ID: 20298227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis.
    Takeuchi H; Higashiyama T
    Nature; 2016 Mar; 531(7593):245-8. PubMed ID: 26961657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of pollen tube attraction in response to guidance by female gametophyte tissue using artificial microscale pathway.
    Sato Y; Sugimoto N; Higashiyama T; Arata H
    J Biosci Bioeng; 2015 Dec; 120(6):697-700. PubMed ID: 26116403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decapitation Crosses to Test Pollen Fertility Mutations for Defects in Stigma-Style Penetration.
    Weigand C; Harper J
    Methods Mol Biol; 2020; 2160():29-40. PubMed ID: 32529427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of the Young's modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC).
    Nezhad AS; Naghavi M; Packirisamy M; Bhat R; Geitmann A
    Lab Chip; 2013 Jul; 13(13):2599-608. PubMed ID: 23571308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restricted Pollination for Tracing Individual Pollen Tubes in a Pistil.
    Takahashi T; Mori T; Igawa T
    Methods Mol Biol; 2020; 2160():73-81. PubMed ID: 32529429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lab-on-a-chip for studying growing pollen tubes.
    Agudelo CG; Packirisamy M; Geitmann A
    Methods Mol Biol; 2014; 1080():237-48. PubMed ID: 24132434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pollen tube access to the ovule is mediated by glycoprotein secretion on the obturator of apple (Malus × domestica, Borkh).
    Losada JM; Herrero M
    Ann Bot; 2017 Apr; 119(6):989-1000. PubMed ID: 28137704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.