These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 32529446)
1. Testing Pollen Tube Proteins for In Vivo Binding to Phosphatidic Acid by n-Butanol Treatment and Confocal Microscopy. Fritz C; Kost B Methods Mol Biol; 2020; 2160():307-325. PubMed ID: 32529446 [TBL] [Abstract][Full Text] [Related]
2. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. Potocký M; Pleskot R; Pejchar P; Vitale N; Kost B; Žárský V New Phytol; 2014 Jul; 203(2):483-494. PubMed ID: 24750036 [TBL] [Abstract][Full Text] [Related]
3. Functional analysis of phospholipase Dδ family in tobacco pollen tubes. Pejchar P; Sekereš J; Novotný O; Žárský V; Potocký M Plant J; 2020 Jul; 103(1):212-226. PubMed ID: 32064689 [TBL] [Abstract][Full Text] [Related]
4. Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Potocký M; Eliás M; Profotová B; Novotná Z; Valentová O; Zárský V Planta; 2003 May; 217(1):122-30. PubMed ID: 12721856 [TBL] [Abstract][Full Text] [Related]
5. Quantitative Structural Organization of Bulk Apical Membrane Traffic in Pollen Tubes. Grebnev G; Cvitkovic M; Fritz C; Cai G; Smith AS; Kost B Plant Physiol; 2020 Aug; 183(4):1559-1585. PubMed ID: 32482906 [TBL] [Abstract][Full Text] [Related]
6. Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth. Bloch D; Pleskot R; Pejchar P; Potocký M; Trpkošová P; Cwiklik L; Vukašinović N; Sternberg H; Yalovsky S; Žárský V Plant Physiol; 2016 Oct; 172(2):980-1002. PubMed ID: 27516531 [TBL] [Abstract][Full Text] [Related]
7. A genome-wide functional characterization of Arabidopsis regulatory calcium sensors in pollen tubes. Zhou L; Fu Y; Yang Z J Integr Plant Biol; 2009 Aug; 51(8):751-61. PubMed ID: 19686372 [TBL] [Abstract][Full Text] [Related]
8. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. Putta P; Rankenberg J; Korver RA; van Wijk R; Munnik T; Testerink C; Kooijman EE Biochim Biophys Acta; 2016 Nov; 1858(11):2709-2716. PubMed ID: 27480805 [TBL] [Abstract][Full Text] [Related]
9. Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Zhang W; Qin C; Zhao J; Wang X Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9508-13. PubMed ID: 15197253 [TBL] [Abstract][Full Text] [Related]
10. Analysis of Exocyst Subunit EXO70 Family Reveals Distinct Membrane Polar Domains in Tobacco Pollen Tubes. Sekereš J; Pejchar P; Šantrůček J; Vukašinović N; Žárský V; Potocký M Plant Physiol; 2017 Mar; 173(3):1659-1675. PubMed ID: 28082718 [TBL] [Abstract][Full Text] [Related]
11. Plant AP180 N-Terminal Homolog Proteins Are Involved in Clathrin-Dependent Endocytosis during Pollen Tube Growth in Arabidopsis thaliana. Kaneda M; van Oostende-Triplet C; Chebli Y; Testerink C; Bednarek SY; Geitmann A Plant Cell Physiol; 2019 Jun; 60(6):1316-1330. PubMed ID: 30796435 [TBL] [Abstract][Full Text] [Related]
13. Imaging and Editing the Phospholipidome. Chiu DC; Baskin JM Acc Chem Res; 2022 Nov; 55(21):3088-3098. PubMed ID: 36278840 [TBL] [Abstract][Full Text] [Related]
14. Turnover of Phosphatidic Acid through Distinct Signaling Pathways Affects Multiple Aspects of Pollen Tube Growth in Tobacco. Pleskot R; Pejchar P; Bezvoda R; Lichtscheidl IK; Wolters-Arts M; Marc J; Zárský V; Potocký M Front Plant Sci; 2012; 3():54. PubMed ID: 22639652 [TBL] [Abstract][Full Text] [Related]
15. Identification and functional characterization of the Arabidopsis Snf1-related protein kinase SnRK2.4 phosphatidic acid-binding domain. Julkowska MM; McLoughlin F; Galvan-Ampudia CS; Rankenberg JM; Kawa D; Klimecka M; Haring MA; Munnik T; Kooijman EE; Testerink C Plant Cell Environ; 2015 Mar; 38(3):614-24. PubMed ID: 25074439 [TBL] [Abstract][Full Text] [Related]
16. Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Ischebeck T; Stenzel I; Hempel F; Jin X; Mosblech A; Heilmann I Plant J; 2011 Feb; 65(3):453-68. PubMed ID: 21265898 [TBL] [Abstract][Full Text] [Related]
17. The REN4 rheostat dynamically coordinates the apical and lateral domains of Arabidopsis pollen tubes. Li H; Luo N; Wang W; Liu Z; Chen J; Zhao L; Tan L; Wang C; Qin Y; Li C; Xu T; Yang Z Nat Commun; 2018 Jul; 9(1):2573. PubMed ID: 29968705 [TBL] [Abstract][Full Text] [Related]
18. Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Huang S; Gao L; Blanchoin L; Staiger CJ Mol Biol Cell; 2006 Apr; 17(4):1946-58. PubMed ID: 16436516 [TBL] [Abstract][Full Text] [Related]
19. In vivo Rac/Rop localization as well as interaction with RhoGAP and RhoGDI in tobacco pollen tubes: analysis by low-level expression of fluorescent fusion proteins and bimolecular fluorescence complementation. Sun J; Eklund DM; Montes-Rodriguez A; Kost B Plant J; 2015 Oct; 84(1):83-98. PubMed ID: 26252733 [TBL] [Abstract][Full Text] [Related]
20. Identification of novel phosphatidic acid binding domain on sphingosine kinase 1 of Arabidopsis thaliana. Pandit S; Dalal V; Mishra G Plant Physiol Biochem; 2018 Jul; 128():178-184. PubMed ID: 29783183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]