BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 32529591)

  • 1. Gills and air-breathing organ in O
    Pelster B; Wood CM; Braz-Mota S; Val AL
    J Comp Physiol B; 2020 Sep; 190(5):569-583. PubMed ID: 32529591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gills versus kidney for ionoregulation in the obligate air-breathing
    Wood CM; Pelster B; Braz-Mota S; Val AL
    J Exp Biol; 2020 Oct; 223(Pt 20):. PubMed ID: 32895323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular oxygen consumption, ROS production and ROS defense in two different size-classes of an Amazonian obligate air-breathing fish (Arapaima gigas).
    Pelster B; Wood CM; Campos DF; Val AL
    PLoS One; 2020; 15(7):e0236507. PubMed ID: 32730281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of ontogenetic changes in branchial morphology on gill function in Arapaima gigas.
    Gonzalez RJ; Brauner CJ; Wang YX; Richards JG; Patrick ML; Xi W; Matey V; Val AL
    Physiol Biochem Zool; 2010; 83(2):322-32. PubMed ID: 20100089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in gill and air-breathing organ characteristics during the transition from water- to air-breathing in juvenile Arapaima gigas.
    Frommel AY; Kwan GT; Prime KJ; Tresguerres M; Lauridsen H; Val AL; Gonçalves LU; Brauner CJ
    J Exp Zool A Ecol Integr Physiol; 2021 Nov; 335(9-10):801-813. PubMed ID: 33819380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon.
    Brauner CJ; Matey V; Wilson JM; Bernier NJ; Val AL
    J Exp Biol; 2004 Apr; 207(Pt 9):1433-8. PubMed ID: 15037637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arapaima gigas maintains gas exchange separation in severe aquatic hypoxia but does not suffer branchial oxygen loss.
    Aaskov ML; Jensen RJ; Skov PV; Wood CM; Wang T; Malte H; Bayley M
    J Exp Biol; 2022 Mar; 225(6):. PubMed ID: 35132994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transition from water-breathing to air-breathing is associated with a shift in ion uptake from gills to gut: a study of two closely related erythrinid teleosts, Hoplerythrinus unitaeniatus and Hoplias malabaricus.
    Wood CM; Pelster B; Giacomin M; Sadauskas-Henrique H; Almeida-Val VM; Val AL
    J Comp Physiol B; 2016 May; 186(4):431-45. PubMed ID: 26857274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.
    Scott GR; Matey V; Mendoza JA; Gilmour KM; Perry SF; Almeida-Val VM; Val AL
    J Comp Physiol B; 2017 Jan; 187(1):117-133. PubMed ID: 27461227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partitioning of respiration between the gills and air-breathing organ in response to aquatic hypoxia and exercise in the pacific tarpon, Megalops cyprinoides.
    Seymour RS; Christian K; Bennett MB; Baldwin J; Wells RM; Baudinette RV
    Physiol Biochem Zool; 2004; 77(5):760-7. PubMed ID: 15547794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of aerial O2 partial pressure on bimodal gas exchange and air-breathing behaviour in Trichogaster leeri.
    Alton LA; White CR; Seymour RS
    J Exp Biol; 2007 Jul; 210(Pt 13):2311-9. PubMed ID: 17575036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The absence of ion-regulatory suppression in the gills of the aquatic air-breathing fish Trichogaster lalius during oxygen stress.
    Huang CY; Lin HH; Lin CH; Lin HC
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jan; 179():7-16. PubMed ID: 25194989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do air-breathing fish suffer branchial oxygen loss in hypoxic water?
    Aaskov ML; Nelson D; Lauridsen H; Huong DTT; Ishimatsu A; Crossley DA; Malte H; Bayley M
    Proc Biol Sci; 2023 Sep; 290(2006):20231353. PubMed ID: 37700647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of Acetylcholine- and G protein coupled Muscarinic receptor in the Neuroepithelial cells (NECs) of the obligated air-breathing fish, Arapaima gigas (Arapaimatidae: Teleostei).
    Zaccone G; Cupello C; Capillo G; Kuciel M; Nascimento ALR; Gopesh A; Germanà GP; Spanò N; Guerrera MC; Aragona M; Crupi R; Icardo JM; Lauriano ER
    Zoology (Jena); 2020 Apr; 139():125755. PubMed ID: 32088527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogeny of hemoglobin‑oxygen binding and multiplicity in the obligate air-breathing fish Arapaima gigas.
    Weber RE; Damsgaard C; Fago A; Val AL; Moens L
    Comp Biochem Physiol A Mol Integr Physiol; 2022 Jun; 268():111190. PubMed ID: 35331911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins.
    Wright PA; Wood CM
    J Exp Biol; 2009 Aug; 212(Pt 15):2303-12. PubMed ID: 19617422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air breathing and ammonia excretion in the giant mudskipper, Periophthalmodon schlosseri.
    Randall DJ; Ip YK; Chew SF; Wilson JM
    Physiol Biochem Zool; 2004; 77(5):783-8. PubMed ID: 15547796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and biochemical strategies for withstanding emersion in two galaxiid fishes.
    Urbina MA; Walsh PJ; Hill JV; Glover CN
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Oct; 176():49-58. PubMed ID: 25026541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ventilatory responses of the clown knifefish, Chitala ornata, to arterial hypercapnia remain after gill denervation.
    Tuong DD; Huong DTT; Phuong NT; Bayley M; Milsom WK
    J Comp Physiol B; 2019 Dec; 189(6):673-683. PubMed ID: 31552490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emersion and recovery alter oxygen consumption, ammonia and urea excretion, and oxidative stress parameters, but not diffusive water exchange or transepithelial potential in the green crab (Carcinus maenas).
    Sadauskas-Henrique H; Johannsson OE; Po BHK; Val AL; Wood CM
    J Exp Biol; 2023 Jun; 226(12):. PubMed ID: 37194789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.