BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32529831)

  • 1. Dynamic ADP-Ribosylome, Phosphoproteome, and Interactome in LPS-Activated Macrophages.
    Daniels CM; Kaplan PR; Bishof I; Bradfield C; Tucholski T; Nuccio AG; Manes NP; Katz S; Fraser IDC; Nita-Lazar A
    J Proteome Res; 2020 Sep; 19(9):3716-3731. PubMed ID: 32529831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous, Quantitative Characterization of Protein ADP-Ribosylation and Protein Phosphorylation in Macrophages.
    Daniels CM; Nuccio A; Kaplan PR; Nita-Lazar A
    Methods Mol Biol; 2020; 2184():145-160. PubMed ID: 32808224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADP-Ribosylated Peptide Enrichment and Site Identification: The Phosphodiesterase-Based Method.
    Daniels CM; Ong SE; Leung AKL
    Methods Mol Biol; 2017; 1608():79-93. PubMed ID: 28695505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Study into the ADP-Ribosylome of IFN-γ-Stimulated THP-1 Human Macrophage-like Cells Identifies ARTD8/PARP14 and ARTD9/PARP9 ADP-Ribosylation.
    Higashi H; Maejima T; Lee LH; Yamazaki Y; Hottiger MO; Singh SA; Aikawa M
    J Proteome Res; 2019 Apr; 18(4):1607-1622. PubMed ID: 30848916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of ADP-Ribose Acceptor Sites on In Vitro Modified Proteins by Liquid Chromatography-Tandem Mass Spectrometry.
    Leutert M; Bilan V; Gehrig P; Hottiger MO
    Methods Mol Biol; 2017; 1608():137-148. PubMed ID: 28695508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome-Wide Identification of In Vivo ADP-Ribose Acceptor Sites by Liquid Chromatography-Tandem Mass Spectrometry.
    Larsen SC; Leutert M; Bilan V; Martello R; Jungmichel S; Young C; Hottiger MO; Nielsen ML
    Methods Mol Biol; 2017; 1608():149-162. PubMed ID: 28695509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing ADP-Ribosylation Sites Using Af1521 Enrichment Coupled to ETD-Based Mass Spectrometry.
    Anagho HA; Elsborg JD; Hendriks IA; Buch-Larsen SC; Nielsen ML
    Methods Mol Biol; 2023; 2609():251-270. PubMed ID: 36515840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of ADP-ribosylation in activated monocytes/macrophages.
    Hauschildt S; Scheipers P; Bessler W; Schwarz K; Ullmer A; Flad HD; Heine H
    Adv Exp Med Biol; 1997; 419():249-52. PubMed ID: 9193661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive ADP-ribosylome analysis identifies tyrosine as an ADP-ribose acceptor site.
    Leslie Pedrioli DM; Leutert M; Bilan V; Nowak K; Gunasekera K; Ferrari E; Imhof R; Malmström L; Hottiger MO
    EMBO Rep; 2018 Aug; 19(8):. PubMed ID: 29954836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrofluoric Acid-Based Derivatization Strategy To Profile PARP-1 ADP-Ribosylation by LC-MS/MS.
    Gagné JP; Langelier MF; Pascal JM; Poirier GG
    J Proteome Res; 2018 Jul; 17(7):2542-2551. PubMed ID: 29812941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Advanced Strategy for Comprehensive Profiling of ADP-ribosylation Sites Using Mass Spectrometry-based Proteomics.
    Hendriks IA; Larsen SC; Nielsen ML
    Mol Cell Proteomics; 2019 May; 18(5):1010-1026. PubMed ID: 30798302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling of the ADP-Ribosylome in Living Cells.
    Lehner M; Rieth S; Höllmüller E; Spliesgar D; Mertes B; Stengel F; Marx A
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202200977. PubMed ID: 35188710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide induces ADP-ribosylation of actin in murine macrophages: association with the inhibition of pseudopodia formation, phagocytic activity, and adherence on a laminin substratum.
    Jun CD; Han MK; Kim UH; Chung HT
    Cell Immunol; 1996 Nov; 174(1):25-34. PubMed ID: 8929451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipopolysaccharide-induced change of ADP-ribosylation of a cytosolic protein in bone-marrow-derived macrophages.
    Hauschildt S; Scheipers P; Bessler WG
    Biochem J; 1994 Jan; 297 ( Pt 1)(Pt 1):17-20. PubMed ID: 8280095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome.
    Hendriks IA; Buch-Larsen SC; Prokhorova E; Elsborg JD; Rebak AKLFS; Zhu K; Ahel D; Lukas C; Ahel I; Nielsen ML
    Nat Commun; 2021 Oct; 12(1):5893. PubMed ID: 34625544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Promise of Proteomics for the Study of ADP-Ribosylation.
    Daniels CM; Ong SE; Leung AK
    Mol Cell; 2015 Jun; 58(6):911-24. PubMed ID: 26091340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of a Mass-Spectrometry-Based Method for the Identification of the
    Lüthi SC; Howald A; Nowak K; Graage R; Bartolomei G; Neupert C; Sidler X; Leslie Pedrioli D; Hottiger MO
    J Proteome Res; 2021 Jun; 20(6):3090-3101. PubMed ID: 34032442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes.
    Martinez-Zamudio R; Ha HC
    Mol Cell Biol; 2012 Jul; 32(13):2490-502. PubMed ID: 22547677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Integrated Chemical Proteomics Approach for Quantitative Profiling of Intracellular ADP-Ribosylation.
    Kalesh K; Lukauskas S; Borg AJ; Snijders AP; Ayyappan V; Leung AKL; Haskard DO; DiMaggio PA
    Sci Rep; 2019 Apr; 9(1):6655. PubMed ID: 31040352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of APD-Ribosylation in Bone Health and Disease.
    Wang C; Mbalaviele G
    Cells; 2019 Oct; 8(10):. PubMed ID: 31590342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.