These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 32529840)
1. Exploring the phytoremediation potential of water hyacinth by FTIR Spectroscopy and ICP-OES for treatment of heavy metal contaminated water. Peng H; Wang Y; Tan TL; Chen Z Int J Phytoremediation; 2020; 22(9):939-951. PubMed ID: 32529840 [TBL] [Abstract][Full Text] [Related]
2. Sequestration of precious and pollutant metals in biomass of cultured water hyacinth (Eichhornia crassipes). Newete SW; Erasmus BF; Weiersbye IM; Byrne MJ Environ Sci Pollut Res Int; 2016 Oct; 23(20):20805-20818. PubMed ID: 27475440 [TBL] [Abstract][Full Text] [Related]
3. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India. Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746 [TBL] [Abstract][Full Text] [Related]
4. Municipal landfill leachate treatment for metal removal using water hyacinth in a floating aquatic system. El-Gendy AS; Biswas N; Bewtra JK Water Environ Res; 2006 Sep; 78(9):951-64. PubMed ID: 17120455 [TBL] [Abstract][Full Text] [Related]
5. Biosorption of different gadolinium (Gd) complexes from water by Kartamihardja AAP; Kumasaka S; Hilfi L; Kameo S; Koyama H; Tsushima Y Int J Phytoremediation; 2022; 24(9):893-901. PubMed ID: 34613832 [TBL] [Abstract][Full Text] [Related]
6. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797 [TBL] [Abstract][Full Text] [Related]
7. Phytoremediation potential of Tabinda AB; Irfan R; Yasar A; Iqbal A; Mahmood A Environ Technol; 2020 May; 41(12):1514-1519. PubMed ID: 30355050 [TBL] [Abstract][Full Text] [Related]
8. Effect of design and operational parameters on nutrients and heavy metal removal in pilot floating treatment wetlands with Eichhornia Crassipes treating polluted lake water. Gaballah MS; Ismail K; Aboagye D; Ismail MM; Sobhi M; Stefanakis AI Environ Sci Pollut Res Int; 2021 May; 28(20):25664-25678. PubMed ID: 33464529 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation efficiency of Eichhornia crassipes in fly ash pond. Pandey VC Int J Phytoremediation; 2016; 18(5):450-2. PubMed ID: 26595413 [TBL] [Abstract][Full Text] [Related]
10. Efficiency of Pb, Zn, Cd, and Mn Removal from Karst Water by Zhou JM; Jiang ZC; Qin XQ; Zhang LK; Huang QB; Xu GL; Dionysiou DD Int J Environ Res Public Health; 2020 Jul; 17(15):. PubMed ID: 32722539 [TBL] [Abstract][Full Text] [Related]
11. Bioaccumulation and translocation of nine heavy metals by Eid EM; Shaltout KH; Moghanm FS; Youssef MSG; El-Mohsnawy E; Haroun SA Int J Phytoremediation; 2019; 21(8):821-830. PubMed ID: 30784295 [TBL] [Abstract][Full Text] [Related]
12. Competitive sorption of heavy metals by water hyacinth roots. Zheng JC; Liu HQ; Feng HM; Li WW; Lam MH; Lam PK; Yu HQ Environ Pollut; 2016 Dec; 219():837-845. PubMed ID: 27521292 [TBL] [Abstract][Full Text] [Related]
13. Effects of functional carbon nanodots on water hyacinth response to Cd/Pb stress: Implication for phytoremediation. Chen Q; Cao X; Liu B; Nie X; Liang T; Suhr J; Ci L J Environ Manage; 2021 Dec; 299():113624. PubMed ID: 34467867 [TBL] [Abstract][Full Text] [Related]
14. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Rezania S; Ponraj M; Talaiekhozani A; Mohamad SE; Md Din MF; Taib SM; Sabbagh F; Sairan FM J Environ Manage; 2015 Nov; 163():125-33. PubMed ID: 26311085 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation of landfill leachate waste contaminants through floating bed technique using water hyacinth and water lettuce. Abbas Z; Arooj F; Ali S; Zaheer IE; Rizwan M; Riaz MA Int J Phytoremediation; 2019; 21(13):1356-1367. PubMed ID: 31364389 [TBL] [Abstract][Full Text] [Related]
16. Study of the accumulation of contaminants by Cyperus alternifolius, Lemna minor, Eichhornia crassipes, and Canna × generalis in some contaminated aquatic environments. Shirinpur-Valadi A; Hatamzadeh A; Sedaghathoor S Environ Sci Pollut Res Int; 2019 Jul; 26(21):21340-21350. PubMed ID: 31119548 [TBL] [Abstract][Full Text] [Related]
17. Uptake prediction of nine heavy metals by Eichhornia crassipes grown in irrigation canals: A biomonitoring approach. Eid EM; Shaltout KH; Almuqrin AH; Aloraini DA; Khedher KM; Taher MA; Alfarhan AH; Picó Y; Barcelo D Sci Total Environ; 2021 Aug; 782():146887. PubMed ID: 33848852 [TBL] [Abstract][Full Text] [Related]
18. Enhanced disappearance of mesotrione and fomesafen by water hyacinth (Eichhornia crassipes) in water. Chen Z; Huang L; Song S; Zhang Y; Li Y; Tan H; Li X Int J Phytoremediation; 2019; 21(6):583-589. PubMed ID: 30648422 [TBL] [Abstract][Full Text] [Related]
19. An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Tiwari S; Dixit S; Verma N Environ Monit Assess; 2007 Jun; 129(1-3):253-6. PubMed ID: 17072557 [TBL] [Abstract][Full Text] [Related]
20. Role of heavy metal tolerant rhizosphere bacteria in the phytoremediation of Cu and Pb using Kabeer R; V P S; C S PK; A P T; V S; E K R; K R B Int J Phytoremediation; 2022; 24(11):1120-1132. PubMed ID: 34846266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]