These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32530020)

  • 1. A new Dirac nodal-ring semimetal made of 3D cross-linked graphene networks as lithium ion battery anode materials.
    Wang S; Peng Z; Fang D; Chen S
    Nanoscale; 2020 Jun; 12(24):12985-12992. PubMed ID: 32530020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-carbon-based porous topological semimetal for Li-ion battery anode material.
    Liu J; Wang S; Sun Q
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):651-656. PubMed ID: 28069940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Dirac nodal surface semi-metallic carbon-based structure as a universal anode material for metal-ion batteries with high performance.
    Zhang S; Liu H; Zhang Y; Wang S; Yang B
    Phys Chem Chem Phys; 2021 Sep; 23(34):18744-18751. PubMed ID: 34612412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LC
    Cai Y; Wei Y; Lv C; Zhang L; Chen Y
    Phys Chem Chem Phys; 2023 Jul; 25(28):19239-19244. PubMed ID: 37431775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical prediction of T-graphene as a promising alkali-ion battery anode offering ultrahigh capacity.
    Hu J; Liu Y; Liu N; Li J; Ouyang C
    Phys Chem Chem Phys; 2020 Feb; 22(6):3281-3289. PubMed ID: 31970357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxetic ographene: a new 2D Dirac nodal-ring semimetal carbon-based material with a high negative Poisson's ratio.
    Wang S; Shi B
    Phys Chem Chem Phys; 2022 Sep; 24(36):21806-21811. PubMed ID: 36056705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Porous Nodal-Line Semimetallic Carbon for K-Ion Battery Anode Materials.
    Li X; Liu J; Wang FQ; Wang Q; Jena P
    J Phys Chem Lett; 2019 Oct; 10(20):6360-6367. PubMed ID: 31573207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional graphene+ as an anode material for calcium-ion batteries with ultra-high capacity: a first-principles study.
    Yang T; Ma TC; Ye XJ; Zheng XH; Jia R; Yan XH; Liu CS
    Phys Chem Chem Phys; 2024 Jan; 26(5):4589-4596. PubMed ID: 38250962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles prediction of a two-dimensional vanadium carbide (MXene) as the anode for lithium ion batteries.
    Nyamdelger S; Ochirkhuyag T; Sangaa D; Odkhuu D
    Phys Chem Chem Phys; 2020 Mar; 22(10):5807-5818. PubMed ID: 32105283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional ZrC
    Zhang F; Jing T; Cai S; Deng M; Liang D; Qi X
    Phys Chem Chem Phys; 2021 Jun; 23(22):12731-12738. PubMed ID: 34038491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic Dynamics Investigation of the Thermomechanical Properties and Li Diffusion Kinetics in ψ-Graphene for LIB Anode Material.
    Thomas S; Nam EB; Lee SU
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36240-36248. PubMed ID: 30259728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Me-graphene: a graphene allotrope with near zero Poisson's ratio, sizeable band gap, and high carrier mobility.
    Zhuo Z; Wu X; Yang J
    Nanoscale; 2020 Oct; 12(37):19359-19366. PubMed ID: 32940310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body-Centered Orthorhombic C_{16}: A Novel Topological Node-Line Semimetal.
    Wang JT; Weng H; Nie S; Fang Z; Kawazoe Y; Chen C
    Phys Rev Lett; 2016 May; 116(19):195501. PubMed ID: 27232027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dimensional Carbon-Based Auxetic Materials for Broad-Spectrum Metal-Ion Battery Anodes.
    Wang S; Si Y; Yang B; Ruckenstein E; Chen H
    J Phys Chem Lett; 2019 Jun; 10(12):3269-3275. PubMed ID: 31141368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate.
    Xiao B; Li YC; Yu XF; Cheng JB
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35342-35352. PubMed ID: 27977126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel SiO monolayer with a negative Poisson's ratio and Dirac semimetal properties.
    Du H; Li G; Chen J; Lv Z; Chen Y; Liu S
    Phys Chem Chem Phys; 2020 Sep; 22(35):20107-20113. PubMed ID: 32936133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpenetrating graphene network bct-C
    Yu S; Wang Z; Xiong L; Xiong W; Ouyang C
    Phys Chem Chem Phys; 2019 Nov; 21(42):23485-23491. PubMed ID: 31616886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. THFS-carbon: a theoretical prediction of metallic carbon allotrope with half-auxeticity, planar tetracoordinate carbon, and potential application as anode for sodium-ion batteries.
    Li TK; Ye XJ; Meng L; Liu CS
    Phys Chem Chem Phys; 2023 Jun; 25(22):15295-15301. PubMed ID: 37222137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excellent Electrolyte Wettability and High Energy Density of B
    Lei S; Chen X; Xiao B; Zhang W; Liu J
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28830-28840. PubMed ID: 31321971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?
    Yu YX
    Phys Chem Chem Phys; 2013 Oct; 15(39):16819-27. PubMed ID: 24002442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.