These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 32530048)
1. Remotely sensed vegetation indices for crop nutrition mapping. Sharifi A J Sci Food Agric; 2020 Nov; 100(14):5191-5196. PubMed ID: 32530048 [TBL] [Abstract][Full Text] [Related]
2. Maize Crop Coefficient Estimated from UAV-Measured Multispectral Vegetation Indices. Zhang Y; Han W; Niu X; Li G Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795309 [TBL] [Abstract][Full Text] [Related]
3. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage. Zhang S; Zhao G; Lang K; Su B; Chen X; Xi X; Zhang H Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934683 [TBL] [Abstract][Full Text] [Related]
4. Monitoring Wheat Growth Using a Portable Three-Band Instrument for Crop Growth Monitoring and Diagnosis. Li H; Lin W; Pang F; Jiang X; Cao W; Zhu Y; Ni J Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32443796 [TBL] [Abstract][Full Text] [Related]
5. [A field-based pushbroom imaging spectrometer for estimating chlorophyll content of maize]. Zhang DY; Liu RY; Song XY; Xu XG; Huang WJ; Zhu DZ; Wang JH Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Mar; 31(3):771-5. PubMed ID: 21595237 [TBL] [Abstract][Full Text] [Related]
6. [Applicability of multiple remotely sensed vegetation indices for extracting key phenological metrics of Zhou HQ; Bao G; Jin H; DU LT; Zhang SL; Xu ZW; Bao YH Ying Yong Sheng Tai Xue Bao; 2021 Dec; 32(12):4315-4326. PubMed ID: 34951273 [TBL] [Abstract][Full Text] [Related]
7. Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm. Tan C; Zhou X; Zhang P; Wang Z; Wang D; Guo W; Yun F PLoS One; 2020; 15(3):e0228500. PubMed ID: 32160185 [TBL] [Abstract][Full Text] [Related]
8. [Research on Accuracy and Stability of Inversing Vegetation Chlorophyll Content by Spectral Index Method]. Jiang HL; Yang H; Chen XP; Wang SD; Li XK; Liu K; Cen Y Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr; 35(4):975-81. PubMed ID: 26197586 [TBL] [Abstract][Full Text] [Related]
9. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance. Campbell PK; Middleton EM; Corp LA; Kim MS Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750 [TBL] [Abstract][Full Text] [Related]
10. Assessing the role of SWIR band in detecting agricultural crop stress: a case study of Raichur district, Karnataka, India. Swathandran S; Aslam MAM Environ Monit Assess; 2019 Jun; 191(7):442. PubMed ID: 31203445 [TBL] [Abstract][Full Text] [Related]
11. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves. Junker LV; Ensminger I Tree Physiol; 2016 Jun; 36(6):694-711. PubMed ID: 26928514 [TBL] [Abstract][Full Text] [Related]
12. Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development. Shafian S; Rajan N; Schnell R; Bagavathiannan M; Valasek J; Shi Y; Olsenholler J PLoS One; 2018; 13(5):e0196605. PubMed ID: 29715311 [TBL] [Abstract][Full Text] [Related]
13. [Fraction of absorbed photosynthetically active radiation over summer maize canopy estimated by hyperspectral remote sensing under different drought conditions.]. Liu EH; Zhou GS; Zhou L Ying Yong Sheng Tai Xue Bao; 2019 Jun; 30(6):2021-2029. PubMed ID: 31257775 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity of Vegetation Indices for Estimating Vegetative N Status in Winter Wheat. Prey L; Schmidhalter U Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31461857 [TBL] [Abstract][Full Text] [Related]
15. Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe. Gracia-Romero A; Kefauver SC; Vergara-Díaz O; Hamadziripi E; Zaman-Allah MA; Thierfelder C; Prassana BM; Cairns JE; Araus JL Sci Rep; 2020 Sep; 10(1):16008. PubMed ID: 32994539 [TBL] [Abstract][Full Text] [Related]
16. [Evaluating the utility of MODIS vegetation index for monitoring agricultural drought]. Li HP; Zhang SQ; Gao ZQ; Sun Y Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Mar; 33(3):756-61. PubMed ID: 23705448 [TBL] [Abstract][Full Text] [Related]
17. Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data. Zhou K; Deng X; Yao X; Tian Y; Cao W; Zhu Y; Ustin SL; Cheng T Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335375 [TBL] [Abstract][Full Text] [Related]
18. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region. Sun C; Bian Y; Zhou T; Pan J Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130689 [TBL] [Abstract][Full Text] [Related]
19. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies. Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757 [TBL] [Abstract][Full Text] [Related]
20. [Assessment of chlorophyll content using a new vegetation index based on multi-angular hyperspectral image data]. Liao QH; Zhang DY; Wang JH; Yang GJ; Yang H; Coburn C; Wong Z; Wang DC Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1599-604. PubMed ID: 25358171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]