These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32530256)

  • 1. [Advances in proteomic research on plant responses to metal-based nanomaterial stress].
    Xia YQ; Peng C; Xiong MY; Yuan P
    Ying Yong Sheng Tai Xue Bao; 2020 May; 31(5):1763-1772. PubMed ID: 32530256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dissolved organic matter on the environmental behavior and toxicity of metal nanomaterials: A review.
    Yang X; Wang Z; Xu J; Zhang C; Gao P; Zhu L
    Chemosphere; 2024 Jun; 358():142208. PubMed ID: 38704042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Nanomaterials: Chemical Design, Synthesis, and Potential Applications.
    Zhu K; Ju Y; Xu J; Yang Z; Gao S; Hou Y
    Acc Chem Res; 2018 Feb; 51(2):404-413. PubMed ID: 29412634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomarkers of exposure and effect in human biomonitoring of metal-based nanomaterials: their use in primary prevention and health surveillance.
    Bocca B; Battistini B
    Nanotoxicology; 2024 Feb; 18(1):1-35. PubMed ID: 38436298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating.
    Judy JD; Unrine JM; Rao W; Wirick S; Bertsch PM
    Environ Sci Technol; 2012 Aug; 46(15):8467-74. PubMed ID: 22784043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How the Physicochemical Properties of Manufactured Nanomaterials Affect Their Performance in Dispersion and Their Applications in Biomedicine: A Review.
    Anastasiadis SH; Chrissopoulou K; Stratakis E; Kavatzikidou P; Kaklamani G; Ranella A
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation State of Metal-Based Nanomaterials at the Pulmonary Surfactant Film Determines Biophysical Inhibition.
    Yang Y; Xu L; Dekkers S; Zhang LG; Cassee FR; Zuo YY
    Environ Sci Technol; 2018 Aug; 52(15):8920-8929. PubMed ID: 30011188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabricated nanoparticles: current status and potential phytotoxic threats.
    Yadav T; Mungray AA; Mungray AK
    Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of heavy metals and metal-containing nanoparticles on plants.
    Mustafa G; Komatsu S
    Biochim Biophys Acta; 2016 Aug; 1864(8):932-44. PubMed ID: 26940747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of p53 in lung macrophages following exposure to a panel of manufactured nanomaterials.
    Belade E; Chrusciel S; Armand L; Simon-Deckers A; Bussy C; Caramelle P; Gagliolo JM; Boyer L; Lanone S; Pairon JC; Kermanizadeh A; Boczkowski J
    Arch Toxicol; 2015 Sep; 89(9):1543-56. PubMed ID: 25098341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired synthesis of metal nanomaterials and applications.
    Huang J; Lin L; Sun D; Chen H; Yang D; Li Q
    Chem Soc Rev; 2015 Oct; 44(17):6330-74. PubMed ID: 26083903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the responses of rice to environmental stress using proteomics.
    Singh R; Jwa NS
    J Proteome Res; 2013 Nov; 12(11):4652-69. PubMed ID: 23984864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of eucalyptus leaves unveils putative mechanisms involved in the plant response to a real condition of soil contamination by multiple heavy metals in the presence or absence of mycorrhizal/rhizobacterial additives.
    Guarino C; Conte B; Spada V; Arena S; Sciarrillo R; Scaloni A
    Environ Sci Technol; 2014 Oct; 48(19):11487-96. PubMed ID: 25203592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates.
    Holden PA; Schimel JP; Godwin HA
    Curr Opin Biotechnol; 2014 Jun; 27():73-8. PubMed ID: 24863899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals.
    Ahsan N; Renaut J; Komatsu S
    Proteomics; 2009 May; 9(10):2602-21. PubMed ID: 19405030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic nanomaterials-mediated neuromodulation.
    Lu X; Li G; Jiao W; Li K; Zhang T; Liu X; Fan H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(4):e1890. PubMed ID: 37089064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Metal-Based Nanoparticle-Mediated Biological Effects in
    Geng M; Li L; Ai M; Jin J; Hu D; Song K
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.