These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32530267)

  • 21. Ensemble and Single Particle Fluorescence Characterization of Dye-Labeled Cellulose Nanocrystals.
    Leng T; Jakubek ZJ; Mazloumi M; Leung ACW; Johnston LJ
    Langmuir; 2017 Aug; 33(32):8002-8011. PubMed ID: 28718649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manipulation of cellulose nanocrystal surface sulfate groups toward biomimetic nanostructures in aqueous media.
    Zoppe JO; Johansson LS; Seppälä J
    Carbohydr Polym; 2015 Aug; 126():23-31. PubMed ID: 25933518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uniform Growth of Nanocrystalline ZIF-8 on Cellulose Nanocrystals: Useful Template for Microporous Organic Polymers.
    Cho K; Andrew LJ; MacLachlan MJ
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202300960. PubMed ID: 36869007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling the directionality of charge transfer in phthalocyaninato zinc sensitizer for a dye-sensitized solar cell: density functional theory studies.
    Wan L; Qi D; Zhang Y; Jiang J
    Phys Chem Chem Phys; 2011 Jan; 13(4):1639-48. PubMed ID: 21103486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A density functional theory study of the correlation between analyte basicity, ZnPc adsorption strength, and sensor response.
    Tran NL; Bohrer FI; Trogler WC; Kummel AC
    J Chem Phys; 2009 May; 130(20):204307. PubMed ID: 19485449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds.
    Osorio DA; Lee BEJ; Kwiecien JM; Wang X; Shahid I; Hurley AL; Cranston ED; Grandfield K
    Acta Biomater; 2019 Mar; 87():152-165. PubMed ID: 30710708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Some modification of cellulose nanocrystals for functional Pickering emulsions.
    Saidane D; Perrin E; Cherhal F; Guellec F; Capron I
    Philos Trans A Math Phys Eng Sci; 2016 Jul; 374(2072):. PubMed ID: 27298429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dielectric Characterization of Confined Water in Chiral Cellulose Nanocrystal Films.
    Natarajan B; Emiroglu C; Obrzut J; Fox DM; Pazmino B; Douglas JF; Gilman JW
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14222-14231. PubMed ID: 28394559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.
    Hu Z; Ballinger S; Pelton R; Cranston ED
    J Colloid Interface Sci; 2015 Feb; 439():139-48. PubMed ID: 25463186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of Multiwall Carbon Nanotubes with Zinc Phthalocyanine Hybrid Materials and Their Nonlinear Optical (NLO) Properties.
    Ramya E; Momen N; Rao DN
    J Nanosci Nanotechnol; 2018 Jul; 18(7):4764-4770. PubMed ID: 29442655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellulose nanocrystals (CNCs) with different crystalline allomorph for oil in water Pickering emulsions.
    Li X; Li J; Gong J; Kuang Y; Mo L; Song T
    Carbohydr Polym; 2018 Mar; 183():303-310. PubMed ID: 29352889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reductive Amination Reaction for the Functionalization of Cellulose Nanocrystals.
    Hassan Omar O; Giannelli R; Colaprico E; Capodieci L; Babudri F; Operamolla A
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the Physicochemical Properties of Cellulose Nanocrystals through an In Situ Oligosaccharide Surface Modification Method.
    Niinivaara E; Vanderfleet OM; Kontturi E; Cranston ED
    Biomacromolecules; 2021 Aug; 22(8):3284-3296. PubMed ID: 34260208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of cellulose nanocrystals from medium density fiberboards.
    Gu J; Hu C; Zhong R; Tu D; Yun H; Zhang W; Leu SY
    Carbohydr Polym; 2017 Jul; 167():70-78. PubMed ID: 28433179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study on the preparation and characterization of cellulose nanocrystals with various polymorphs.
    Gong J; Mo L; Li J
    Carbohydr Polym; 2018 Sep; 195():18-28. PubMed ID: 29804966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phthalocyanine-C60 fused conjugates exhibiting molecular orbital interactions depending on the solvent polarity.
    Fukuda T; Hashimoto N; Araki Y; El-Khouly ME; Ito O; Kobayashi N
    Chem Asian J; 2009 Nov; 4(11):1678-86. PubMed ID: 19866461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Folic Acid-Conjugated Cellulose Nanocrystals Show High Folate-Receptor Binding Affinity and Uptake by KB and Breast Cancer Cells.
    Bittleman KR; Dong S; Roman M; Lee YW
    ACS Omega; 2018 Oct; 3(10):13952-13959. PubMed ID: 30411055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Description of the Interface of Pickering Emulsions Stabilized by Cellulose Nanocrystals.
    Cherhal F; Cousin F; Capron I
    Biomacromolecules; 2016 Feb; 17(2):496-502. PubMed ID: 26667079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellulose nanocrystal-mediated synthesis of silver nanoparticles: role of sulfate groups in nucleation phenomena.
    Lokanathan AR; Uddin KM; Rojas OJ; Laine J
    Biomacromolecules; 2014 Jan; 15(1):373-9. PubMed ID: 24328321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced luminescence sensing performance and increased intrachain order in blended films of P3HT and cellulose nanocrystals.
    Alam KM; Garcia JC; Kiriakou MV; Chaulagain N; Vrushabendrakumar D; Cranston ED; Gusarov S; Kobryn AE; Shankar K
    Nanotechnology; 2023 Mar; 34(20):. PubMed ID: 36787629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.