These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32530374)

  • 1. Conventional genetic manipulation of desulfurizing bacteria and prospects of using CRISPR-Cas systems for enhanced desulfurization activity.
    Parveen S; Akhtar N; Ghauri MA; Akhtar K
    Crit Rev Microbiol; 2020 May; 46(3):300-320. PubMed ID: 32530374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing Desulfurization in the Model Biocatalyst
    Martzoukou O; Amillis S; Glekas PD; Breyanni D; Avgeris M; Scorilas A; Kekos D; Pachnos M; Mavridis G; Mamma D; Hatzinikolaou DG
    Appl Environ Microbiol; 2023 Feb; 89(2):e0197022. PubMed ID: 36688659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria.
    Martínez I; El-Said Mohamed M; Santos VE; García JL; García-Ochoa F; Díaz E
    J Biotechnol; 2017 Nov; 262():47-55. PubMed ID: 28947364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.
    Soleimani M; Bassi A; Margaritis A
    Biotechnol Adv; 2007; 25(6):570-96. PubMed ID: 17716849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodesulfurization of fossil fuels.
    Gray KA; Mrachko GT; Squires CH
    Curr Opin Microbiol; 2003 Jun; 6(3):229-35. PubMed ID: 12831898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of different types of CRISPR/Cas-based systems in bacteria.
    Liu Z; Dong H; Cui Y; Cong L; Zhang D
    Microb Cell Fact; 2020 Sep; 19(1):172. PubMed ID: 32883277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex genome editing of microorganisms using CRISPR-Cas.
    Adiego-Pérez B; Randazzo P; Daran JM; Verwaal R; Roubos JA; Daran-Lapujade P; van der Oost J
    FEMS Microbiol Lett; 2019 Apr; 366(8):. PubMed ID: 31087001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 10. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Truncated dsz Operon Responsible for Dibenzothiophene Biodesulfurization in Rhodococcus sp. FUM94.
    Khosravinia S; Mahdavi MA; Gheshlaghi R; Dehghani H
    Appl Biochem Biotechnol; 2018 Mar; 184(3):885-896. PubMed ID: 28918586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between Sulfur Assimilation and Biodesulfurization Activity in Rhodococcus qingshengii IGTS8: Insights into a Regulatory Role of the Reverse Transsulfuration Pathway.
    Martzoukou O; Glekas PD; Avgeris M; Mamma D; Scorilas A; Kekos D; Amillis S; Hatzinikolaou DG
    mBio; 2022 Aug; 13(4):e0075422. PubMed ID: 35856606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico modeling and evaluation of Gordonia alkanivorans for biodesulfurization.
    Aggarwal S; Karimi IA; Ivan GR
    Mol Biosyst; 2013 Oct; 9(10):2530-40. PubMed ID: 23921469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and Characterization of a New Recombinant Vector to Remove Sulfate Repression of
    Khosravinia S; Mahdavi MA; Gheshlaghi R; Dehghani H; Rasekh B
    Front Microbiol; 2018; 9():1578. PubMed ID: 30065711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms.
    Javed MR; Sadaf M; Ahmed T; Jamil A; Nawaz M; Abbas H; Ijaz A
    Curr Microbiol; 2018 Dec; 75(12):1675-1683. PubMed ID: 30078067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.
    Mougiakos I; Bosma EF; de Vos WM; van Kranenburg R; van der Oost J
    Trends Biotechnol; 2016 Jul; 34(7):575-587. PubMed ID: 26944793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
    Tarasava K; Oh EJ; Eckert CA; Gill RT
    Biotechnol J; 2018 Sep; 13(9):e1700586. PubMed ID: 29917318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.