These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32530688)
1. Kinetic Theory and Shear Viscosity of Dense Dipolar Hard Sphere Liquids. Pousaneh F; de Wijn AS Phys Rev Lett; 2020 May; 124(21):218004. PubMed ID: 32530688 [TBL] [Abstract][Full Text] [Related]
2. Local shear viscosity of strongly inhomogeneous dense fluids: from the hard-sphere to the Lennard-Jones fluids. Hoang H; Galliero G J Phys Condens Matter; 2013 Dec; 25(48):485001. PubMed ID: 24132101 [TBL] [Abstract][Full Text] [Related]
3. An equation of state for Stockmayer fluids based on a perturbation theory for dipolar hard spheres. Theiss M; van Westen T; Gross J J Chem Phys; 2019 Sep; 151(10):104102. PubMed ID: 31521101 [TBL] [Abstract][Full Text] [Related]
7. A kinetic theory description of the viscosity of dense fluids consisting of chain molecules. de Wijn AS; Vesovic V; Jackson G; Trusler JP J Chem Phys; 2008 May; 128(20):204901. PubMed ID: 18513042 [TBL] [Abstract][Full Text] [Related]
8. Theoretical scheme for the shear viscosity of Lennard-Jones fluids. Robles M; Uruchurtu LI J Chem Phys; 2006 Mar; 124(9):94112. PubMed ID: 16526850 [TBL] [Abstract][Full Text] [Related]
9. Time correlation functions of hard sphere and soft sphere fluids. Brańka AC; Heyes DM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021202. PubMed ID: 14995434 [TBL] [Abstract][Full Text] [Related]
10. Relative permittivity of polar liquids. Comparison of theory, experiment, and simulation. Valiskó M; Boda D J Phys Chem B; 2005 Apr; 109(13):6355-65. PubMed ID: 16851708 [TBL] [Abstract][Full Text] [Related]
11. A practical integral equation for the structure and thermodynamics of hard sphere Coulomb fluids. Zwanikken JW; Jha PK; Olvera de la Cruz M J Chem Phys; 2011 Aug; 135(6):064106. PubMed ID: 21842925 [TBL] [Abstract][Full Text] [Related]
12. Phenomenological viscous factor in the nonequilibrium distribution function for liquids. Morioka S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051203. PubMed ID: 16383595 [TBL] [Abstract][Full Text] [Related]
13. Shear viscosity for a moderately dense granular binary mixture. Garzó V; Montanero JM Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041302. PubMed ID: 14682936 [TBL] [Abstract][Full Text] [Related]
14. Comment on 'Pseudo hard-sphere viscosities from equilibrium molecular dynamics'. Smallenburg F J Phys Condens Matter; 2024 Mar; 36(22):. PubMed ID: 38436284 [TBL] [Abstract][Full Text] [Related]
15. Bulk viscosity of hard sphere fluids by equilibrium and nonequilibrium molecular dynamics simulations. Heyes DM; Pieprzyk S; Brańka AC J Chem Phys; 2022 Sep; 157(11):114502. PubMed ID: 36137779 [TBL] [Abstract][Full Text] [Related]
16. Transport properties of the rough hard sphere fluid. Kravchenko O; Thachuk M J Chem Phys; 2012 Jan; 136(4):044520. PubMed ID: 22299904 [TBL] [Abstract][Full Text] [Related]
17. Rheology of dense polydisperse granular fluids under shear. Lutsko JF Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061101. PubMed ID: 15697335 [TBL] [Abstract][Full Text] [Related]
18. Shear viscosity for a heated granular binary mixture at low density. Montanero JM; Garzó V Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021308. PubMed ID: 12636672 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic scaling and corresponding states for the self-diffusion coefficient of non-conformal soft-sphere fluids. Rodríguez-López T; Moreno-Razo JA; del Río F J Chem Phys; 2013 Mar; 138(11):114502. PubMed ID: 23534644 [TBL] [Abstract][Full Text] [Related]
20. From equilibrium to steady-state dynamics after switch-on of shear. Krüger M; Weysser F; Voigtmann T Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061506. PubMed ID: 20866424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]