These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32531152)

  • 1. Programmed Allelic Mutagenesis of a DNA Polymerase with Single Amino Acid Resolution.
    Nikoomanzar A; Vallejo D; Yik EJ; Chaput JC
    ACS Synth Biol; 2020 Jul; 9(7):1873-1881. PubMed ID: 32531152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures.
    Dunn MR; Otto C; Fenton KE; Chaput JC
    ACS Chem Biol; 2016 May; 11(5):1210-9. PubMed ID: 26860781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the Determinants of Polymerase Specificity by Microfluidic-Based Deep Mutational Scanning.
    Nikoomanzar A; Vallejo D; Chaput JC
    ACS Synth Biol; 2019 Jun; 8(6):1421-1429. PubMed ID: 31081325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general strategy for expanding polymerase function by droplet microfluidics.
    Larsen AC; Dunn MR; Hatch A; Sau SP; Youngbull C; Chaput JC
    Nat Commun; 2016 Apr; 7():11235. PubMed ID: 27044725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Massively parallel single-amino-acid mutagenesis.
    Kitzman JO; Starita LM; Lo RS; Fields S; Shendure J
    Nat Methods; 2015 Mar; 12(3):203-6, 4 p following 206. PubMed ID: 25559584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution of custom polymerases using droplet microfluidics.
    Vallejo D; Nikoomanzar A; Chaput JC
    Methods Enzymol; 2020; 644():227-253. PubMed ID: 32943147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel ribonucleotide discrimination in the RNA polymerase-like two-barrel catalytic core of Family D DNA polymerases.
    Zatopek KM; Alpaslan E; Evans TC; Sauguet L; Gardner AF
    Nucleic Acids Res; 2020 Dec; 48(21):12204-12218. PubMed ID: 33137176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based interpretation of missense mutations in Y-family DNA polymerases and their implications for polymerase function and lesion bypass.
    Boudsocq F; Ling H; Yang W; Woodgate R
    DNA Repair (Amst); 2002 May; 1(5):343-58. PubMed ID: 12509239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved thermostability and PCR efficiency of Thermococcus celericrescens DNA polymerase via site-directed mutagenesis.
    Kim KP; Cho SS; Lee KK; Youn MH; Kwon ST
    J Biotechnol; 2011 Sep; 155(2):156-63. PubMed ID: 21723333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computer program for the estimation of protein and nucleic acid sequence diversity in random point mutagenesis libraries.
    Volles MJ; Lansbury PT
    Nucleic Acids Res; 2005; 33(11):3667-77. PubMed ID: 15990391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-throughput screening method to reengineer DNA polymerases for random mutagenesis.
    Kardashliev T; Ruff AJ; Zhao J; Schwaneberg U
    Mol Biotechnol; 2014 Mar; 56(3):274-83. PubMed ID: 24122281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A short adaptive path from DNA to RNA polymerases.
    Cozens C; Pinheiro VB; Vaisman A; Woodgate R; Holliger P
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8067-72. PubMed ID: 22566643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.
    Tubeleviciute A; Skirgaila R
    Protein Eng Des Sel; 2010 Aug; 23(8):589-97. PubMed ID: 20513707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli.
    Sutton MD; Duzen JM
    DNA Repair (Amst); 2006 Mar; 5(3):312-23. PubMed ID: 16338175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two positively charged residues of phi29 DNA polymerase, conserved in protein-primed DNA polymerases, are involved in stabilisation of the incoming nucleotide.
    Truniger V; Lázaro JM; Salas M
    J Mol Biol; 2004 Jan; 335(2):481-94. PubMed ID: 14672657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thy pol-2 intein of Thermococcus hydrothermalis is an isoschizomer of PI-TliI and PI-TfuII endonucleases.
    Saves I; Eleaume H; Dietrich J; Masson JM
    Nucleic Acids Res; 2000 Nov; 28(21):4391-6. PubMed ID: 11058140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced PCR efficiency of high-fidelity DNA polymerase from Thermococcus waiotapuensis.
    Cho SS; Yu M; Kim SH; Kwon ST
    Enzyme Microb Technol; 2014 Sep; 63():39-45. PubMed ID: 25039058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartmentalized Self-Replication for Evolution of a DNA Polymerase.
    Abil Z; Ellington AD
    Curr Protoc Chem Biol; 2018 Mar; 10(1):1-17. PubMed ID: 30040233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling mutagenesis and parallel deep sequencing to probe essential residues in a genome or gene.
    Robins WP; Faruque SM; Mekalanos JJ
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):E848-57. PubMed ID: 23401533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.