These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32531157)

  • 1. Artificial Protein-Responsive Riboswitches Upregulate Non-AUG Translation Initiation in Yeast.
    Horie F; Endo K; Ito K
    ACS Synth Biol; 2020 Jul; 9(7):1623-1631. PubMed ID: 32531157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of ribosomal shunt-modulating eukaryotic ON riboswitches by using a cell-free translation system.
    Ogawa A
    Methods Enzymol; 2015; 550():109-28. PubMed ID: 25605383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational efficiency of a non-AUG initiation codon is significantly affected by its sequence context in yeast.
    Chen SJ; Lin G; Chang KJ; Yeh LS; Wang CC
    J Biol Chem; 2008 Feb; 283(6):3173-3180. PubMed ID: 18065417
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Ogawa A; Itoh Y
    ACS Synth Biol; 2020 Oct; 9(10):2648-2655. PubMed ID: 33017145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of artificial riboswitches based on ligand-dependent modulation of internal ribosome entry in wheat germ extract and their applications as label-free biosensors.
    Ogawa A
    RNA; 2011 Mar; 17(3):478-88. PubMed ID: 21224378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. eIF1 discriminates against suboptimal initiation sites to prevent excessive uORF translation genome-wide.
    Zhou F; Zhang H; Kulkarni SD; Lorsch JR; Hinnebusch AG
    RNA; 2020 Apr; 26(4):419-438. PubMed ID: 31915290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing.
    Ivanov IP; Shin BS; Loughran G; Tzani I; Young-Baird SK; Cao C; Atkins JF; Dever TE
    Mol Cell; 2018 Apr; 70(2):254-264.e6. PubMed ID: 29677493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Engineering and screening of artificial riboswitch as a novel gene control element].
    Yang H; Diao Y; Lin J; Xu R
    Sheng Wu Gong Cheng Xue Bao; 2012 Feb; 28(2):134-43. PubMed ID: 22667116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-Free Biosensors Based on Modular Eukaryotic Riboswitches That Function in One Pot at Ambient Temperature.
    Ogawa A; Fujikawa M; Onishi K; Takahashi H
    ACS Synth Biol; 2024 Jul; 13(7):2238-2245. PubMed ID: 38913391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in S. cerevisiae.
    Klauser B; Atanasov J; Siewert LK; Hartig JS
    ACS Synth Biol; 2015 May; 4(5):516-25. PubMed ID: 24871672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Expansion of the Variety of Orthogonal Ligand/Aptamer Pairs for Artificial Riboswitches.
    Ogawa A; Inoue H; Itoh Y; Takahashi H
    ACS Synth Biol; 2023 Jan; 12(1):35-42. PubMed ID: 36566430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region.
    Donahue TF; Cigan AM
    Mol Cell Biol; 1988 Jul; 8(7):2955-63. PubMed ID: 3043200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of artificial ON-riboswitches.
    Ogawa A
    Methods Mol Biol; 2014; 1111():165-81. PubMed ID: 24549619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Mammalian ON-Riboswitches Based on Tandemly Fused Aptamer and Ribozyme.
    Mustafina K; Fukunaga K; Yokobayashi Y
    ACS Synth Biol; 2020 Jan; 9(1):19-25. PubMed ID: 31820936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aptamer-regulated expression of essential genes in yeast.
    Suess B; Entian KD; Kötter P; Weigand JE
    Methods Mol Biol; 2012; 824():381-91. PubMed ID: 22160910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redundancy of non-AUG initiators. A clever mechanism to enhance the efficiency of translation in yeast.
    Chang KJ; Lin G; Men LC; Wang CC
    J Biol Chem; 2006 Mar; 281(12):7775-83. PubMed ID: 16431919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism-guided library design and dual genetic selection of synthetic OFF riboswitches.
    Muranaka N; Abe K; Yokobayashi Y
    Chembiochem; 2009 Sep; 10(14):2375-81. PubMed ID: 19658147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β-Hairpin loop of eukaryotic initiation factor 1 (eIF1) mediates 40 S ribosome binding to regulate initiator tRNA(Met) recruitment and accuracy of AUG selection in vivo.
    Martin-Marcos P; Nanda J; Luna RE; Wagner G; Lorsch JR; Hinnebusch AG
    J Biol Chem; 2013 Sep; 288(38):27546-27562. PubMed ID: 23893413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.
    Inuzuka S; Kakizawa H; Nishimura KI; Naito T; Miyazaki K; Furuta H; Matsumura S; Ikawa Y
    Genes Cells; 2018 Jun; 23(6):435-447. PubMed ID: 29693296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.