These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 32531203)

  • 1. FARFAR2: Improved De Novo Rosetta Prediction of Complex Global RNA Folds.
    Watkins AM; Rangan R; Das R
    Structure; 2020 Aug; 28(8):963-976.e6. PubMed ID: 32531203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA 3D Modeling with FARFAR2, Online.
    Watkins AM; Das R
    Methods Mol Biol; 2023; 2586():233-249. PubMed ID: 36705908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P-FARFAR2: A multithreaded greedy approach to sampling low-energy RNA structures in Rosetta FARFAR2.
    Kamga Youmbi FI; Kengne Tchendji V; Tayou Djamegni C
    Comput Biol Chem; 2023 Jun; 104():107878. PubMed ID: 37167861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling complex RNA tertiary folds with Rosetta.
    Cheng CY; Chou FC; Das R
    Methods Enzymol; 2015; 553():35-64. PubMed ID: 25726460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo 3D models of SARS-CoV-2 RNA elements from consensus experimental secondary structures.
    Rangan R; Watkins AM; Chacon J; Kretsch R; Kladwang W; Zheludev IN; Townley J; Rynge M; Thain G; Das R
    Nucleic Acids Res; 2021 Apr; 49(6):3092-3108. PubMed ID: 33693814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA 3D structure prediction guided by independent folding of homologous sequences.
    Magnus M; Kappel K; Das R; Bujnicki JM
    BMC Bioinformatics; 2019 Oct; 20(1):512. PubMed ID: 31640563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Small Noncanonical RNA Motifs with the Rosetta FARFAR Server.
    Yesselman JD; Das R
    Methods Mol Biol; 2016; 1490():187-98. PubMed ID: 27665600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme.
    Miao Z; Adamiak RW; Antczak M; Batey RT; Becka AJ; Biesiada M; Boniecki MJ; Bujnicki JM; Chen SJ; Cheng CY; Chou FC; Ferré-D'Amaré AR; Das R; Dawson WK; Ding F; Dokholyan NV; Dunin-Horkawicz S; Geniesse C; Kappel K; Kladwang W; Krokhotin A; Łach GE; Major F; Mann TH; Magnus M; Pachulska-Wieczorek K; Patel DJ; Piccirilli JA; Popenda M; Purzycka KJ; Ren A; Rice GM; Santalucia J; Sarzynska J; Szachniuk M; Tandon A; Trausch JJ; Tian S; Wang J; Weeks KM; Williams B; Xiao Y; Xu X; Zhang D; Zok T; Westhof E
    RNA; 2017 May; 23(5):655-672. PubMed ID: 28138060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures.
    Miao Z; Adamiak RW; Blanchet MF; Boniecki M; Bujnicki JM; Chen SJ; Cheng C; Chojnowski G; Chou FC; Cordero P; Cruz JA; Ferré-D'Amaré AR; Das R; Ding F; Dokholyan NV; Dunin-Horkawicz S; Kladwang W; Krokhotin A; Lach G; Magnus M; Major F; Mann TH; Masquida B; Matelska D; Meyer M; Peselis A; Popenda M; Purzycka KJ; Serganov A; Stasiewicz J; Szachniuk M; Tandon A; Tian S; Wang J; Xiao Y; Xu X; Zhang J; Zhao P; Zok T; Westhof E
    RNA; 2015 Jun; 21(6):1066-84. PubMed ID: 25883046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sampling Native-like Structures of RNA-Protein Complexes through Rosetta Folding and Docking.
    Kappel K; Das R
    Structure; 2019 Jan; 27(1):140-151.e5. PubMed ID: 30416038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Rosetta for RNA homology modeling.
    Watkins AM; Rangan R; Das R
    Methods Enzymol; 2019; 623():177-207. PubMed ID: 31239046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-atom knowledge-based potential for RNA structure prediction and assessment.
    Capriotti E; Norambuena T; Marti-Renom MA; Melo F
    Bioinformatics; 2011 Apr; 27(8):1086-93. PubMed ID: 21349865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta.
    Ovchinnikov S; Kim DE; Wang RY; Liu Y; DiMaio F; Baker D
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):67-75. PubMed ID: 26677056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of RNA 3D structure prediction methods: towards enhanced modeling of RNA-ligand interactions.
    Nithin C; Kmiecik S; Błaszczyk R; Nowicka J; Tuszyńska I
    Nucleic Acids Res; 2024 Jul; 52(13):7465-7486. PubMed ID: 38917327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein structure prediction using sparse NOE and RDC restraints with Rosetta in CASP13.
    Kuenze G; Meiler J
    Proteins; 2019 Dec; 87(12):1341-1350. PubMed ID: 31292988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz.
    Das R
    PLoS One; 2013; 8(10):e74830. PubMed ID: 24204571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving fragment quality for de novo structure prediction.
    Shrestha R; Zhang KY
    Proteins; 2014 Sep; 82(9):2240-52. PubMed ID: 24753351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA 3D Structure Comparison Using RNA-Puzzles Toolkit.
    Magnus M; Miao Z
    Methods Mol Biol; 2023; 2586():263-285. PubMed ID: 36705910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS.
    Piatkowski P; Kasprzak JM; Kumar D; Magnus M; Chojnowski G; Bujnicki JM
    Methods Mol Biol; 2016; 1490():217-35. PubMed ID: 27665602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic accuracy in predicting and designing noncanonical RNA structure.
    Das R; Karanicolas J; Baker D
    Nat Methods; 2010 Apr; 7(4):291-4. PubMed ID: 20190761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.