These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32531282)

  • 1. Identification of Conserved Gene-Regulatory Networks that Integrate Environmental Sensing and Growth in the Root Cambium.
    Hoang NV; Choe G; Zheng Y; Aliaga Fandino AC; Sung I; Hur J; Kamran M; Park C; Kim H; Ahn H; Kim S; Fei Z; Lee JY
    Curr Biol; 2020 Aug; 30(15):2887-2900.e7. PubMed ID: 32531282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytokinin-dependent secondary growth determines root biomass in radish (Raphanus sativus L.).
    Jang G; Lee JH; Rastogi K; Park S; Oh SH; Lee JY
    J Exp Bot; 2015 Aug; 66(15):4607-19. PubMed ID: 25979997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root.
    Gancheva MS; Dodueva IE; Lebedeva MA; Tvorogova VE; Tkachenko AA; Lutova LA
    BMC Plant Biol; 2016 Jan; 16 Suppl 1(Suppl 1):7. PubMed ID: 26821718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth.
    Agusti J; Lichtenberger R; Schwarz M; Nehlin L; Greb T
    PLoS Genet; 2011 Feb; 7(2):e1001312. PubMed ID: 21379334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots.
    Zhang J; Eswaran G; Alonso-Serra J; Kucukoglu M; Xiang J; Yang W; Elo A; Nieminen K; Damén T; Joung JG; Yun JY; Lee JH; Ragni L; Barbier de Reuille P; Ahnert SE; Lee JY; Mähönen AP; Helariutta Y
    Nat Plants; 2019 Oct; 5(10):1033-1042. PubMed ID: 31595065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initiation of spontaneous tumors in radish (Raphanus sativus): Cellular, molecular and physiological events.
    Lebedeva Osipova MA; Tvorogova VE; Vinogradova AP; Gancheva MS; Azarakhsh M; Ilina EL; Demchenko KN; Dodueva IE; Lutova LA
    J Plant Physiol; 2015 Jan; 173():97-104. PubMed ID: 25462083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant Biology: Storage Root Growth through Thick and Thin.
    Blomster T; Mähönen AP
    Curr Biol; 2020 Aug; 30(15):R880-R883. PubMed ID: 32750348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Regulatory Network Guided Investigations and Engineering of Storage Root Development in Root Crops.
    Hoang NV; Park C; Kamran M; Lee JY
    Front Plant Sci; 2020; 11():762. PubMed ID: 32625220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide identification and characterization of CONSTANS-like gene family in radish (Raphanus sativus).
    Hu T; Wei Q; Wang W; Hu H; Mao W; Zhu Q; Bao C
    PLoS One; 2018; 13(9):e0204137. PubMed ID: 30248137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RsCLE22a regulates taproot growth through an auxin signaling-related pathway in radish (Raphanus sativus L.).
    Dong J; Wang Y; Xu L; Li B; Wang K; Ying J; He Q; Liu L
    J Exp Bot; 2023 Jan; 74(1):233-250. PubMed ID: 36239471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobile PEAR transcription factors integrate positional cues to prime cambial growth.
    Miyashima S; Roszak P; Sevilem I; Toyokura K; Blob B; Heo JO; Mellor N; Help-Rinta-Rahko H; Otero S; Smet W; Boekschoten M; Hooiveld G; Hashimoto K; Smetana O; Siligato R; Wallner ES; Mähönen AP; Kondo Y; Melnyk CW; Greb T; Nakajima K; Sozzani R; Bishopp A; De Rybel B; Helariutta Y
    Nature; 2019 Jan; 565(7740):490-494. PubMed ID: 30626969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of 'Xinlimei' radish candidate genes associated with anthocyanin biosynthesis based on a transcriptome analysis.
    Sun Y; Wang J; Qiu Y; Liu T; Song J; Li X
    Gene; 2018 May; 657():81-91. PubMed ID: 29518548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gene regulatory network for root epidermis cell differentiation in Arabidopsis.
    Bruex A; Kainkaryam RM; Wieckowski Y; Kang YH; Bernhardt C; Xia Y; Zheng X; Wang JY; Lee MM; Benfey P; Woolf PJ; Schiefelbein J
    PLoS Genet; 2012 Jan; 8(1):e1002446. PubMed ID: 22253603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana.
    Wils CR; Kaufmann K
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):95-105. PubMed ID: 27487457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture.
    Zhang H; Forde BG
    Science; 1998 Jan; 279(5349):407-9. PubMed ID: 9430595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifacial cambium stem cells generate xylem and phloem during radial plant growth.
    Shi D; Lebovka I; López-Salmerón V; Sanchez P; Greb T
    Development; 2019 Jan; 146(1):. PubMed ID: 30626594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress.
    He X; Ma H; Zhao X; Nie S; Li Y; Zhang Z; Shen Y; Chen Q; Lu Y; Lan H; Zhou S; Gao S; Pan G; Lin H
    PLoS One; 2016; 11(3):e0151697. PubMed ID: 26990640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and expression analyses of new potential regulators of xylem development and cambium activity in cassava (Manihot esculenta).
    Siebers T; Catarino B; Agusti J
    Planta; 2017 Mar; 245(3):539-548. PubMed ID: 27900471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress response and programmed cell death guided by NAC013 modulate pithiness in radish taproots.
    Hoang NV; Park S; Park C; Suh H; Kim ST; Chae E; Kang BC; Lee JY
    Plant J; 2022 Jan; 109(1):144-163. PubMed ID: 34724278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Yu R; Zhu X; Luo X; Gong Y; Wang R; Limera C; Zhang K; Liu L
    BMC Genomics; 2015 Mar; 16(1):197. PubMed ID: 25888374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.