These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32531511)
61. Tea saponin enhanced biodegradation of decabromodiphenyl ether by Brevibacillus brevis. Tang S; Bai J; Yin H; Ye J; Peng H; Liu Z; Dang Z Chemosphere; 2014 Nov; 114():255-61. PubMed ID: 25113210 [TBL] [Abstract][Full Text] [Related]
62. Bimetallic Fe/Al system: An all-in-one solid-phase Fenton reagent for generation of hydroxyl radicals under oxic conditions. Lien HL; Yu CH; Kamali S; Sahu RS Sci Total Environ; 2019 Jul; 673():480-488. PubMed ID: 30991337 [TBL] [Abstract][Full Text] [Related]
63. Kinetic and mechanistic investigations of the degradation of propranolol in heat activated persulfate process. Gao YQ; Fang JN; Gao NY; Yi XN; Mao W; Zhang J RSC Adv; 2018 Dec; 8(72):41163-41171. PubMed ID: 35559298 [TBL] [Abstract][Full Text] [Related]
64. A combined experimental and computational study on the oxidative degradation of bromophenols by Fe(VI) and the formation of self-coupling products. Dar AA; Chen J; Shad A; Pan X; Yao J; Bin-Jumah M; Allam AA; Huo Z; Zhu F; Wang Z Environ Pollut; 2020 Mar; 258():113678. PubMed ID: 31796318 [TBL] [Abstract][Full Text] [Related]
65. Insights into nonylphenol degradation by UV-activated persulfate and persulfate/hydrogen peroxide systems in aqueous matrices: a comparative study. Kaur B; Kattel E; Dulova N Environ Sci Pollut Res Int; 2020 Jun; 27(18):22499-22510. PubMed ID: 32319063 [TBL] [Abstract][Full Text] [Related]
66. Complete Defluorination and Mineralization of Perfluorooctanoic Acid by a Mechanochemical Method Using Alumina and Persulfate. Wang N; Lv H; Zhou Y; Zhu L; Hu Y; Majima T; Tang H Environ Sci Technol; 2019 Jul; 53(14):8302-8313. PubMed ID: 31149813 [TBL] [Abstract][Full Text] [Related]
67. Microbial bioavailability of 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) in natural sediments from major rivers of China. Zhu B; Xia X; Wu S; Lu X; Yin X Chemosphere; 2016 Jun; 153():386-93. PubMed ID: 27031801 [TBL] [Abstract][Full Text] [Related]
68. Effect of decabromodiphenyl ether (BDE-209) on a soil-biota system: Role of earthworms and ryegrass. Feng M; He Q; Shi J; Qin L; Zhang X; Sun P; Wang Z Environ Toxicol Chem; 2016 Jun; 35(6):1349-57. PubMed ID: 26448514 [TBL] [Abstract][Full Text] [Related]
69. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. Fan Y; Ji Y; Kong D; Lu J; Zhou Q J Hazard Mater; 2015 Dec; 300():39-47. PubMed ID: 26151383 [TBL] [Abstract][Full Text] [Related]
70. Effect of decabromodiphenyl ether (BDE 209) and dibromodiphenyl ether (BDE 15) on soil microbial activity and bacterial community composition. Liu L; Zhu W; Xiao L; Yang L J Hazard Mater; 2011 Feb; 186(1):883-90. PubMed ID: 21146928 [TBL] [Abstract][Full Text] [Related]
71. Application of activated persulfate for removal of intermediates from antipyrine wastewater degradation refractory towards hydroxyl radical. Monteagudo JM; Durán A; Latorre J; Expósito AJ J Hazard Mater; 2016 Apr; 306():77-86. PubMed ID: 26698672 [TBL] [Abstract][Full Text] [Related]
72. Primary role of cytochrome P450 2B6 in the oxidative metabolism of 2,2',4,4',6-pentabromodiphenyl ether (BDE-100) to hydroxylated BDEs. Gross MS; Butryn DM; McGarrigle BP; Aga DS; Olson JR Chem Res Toxicol; 2015 Apr; 28(4):672-81. PubMed ID: 25629761 [TBL] [Abstract][Full Text] [Related]
73. Degradation of 2,2',4,4'-tetrabromodiphenyl ether by Pycnoporus sanguineus in the presence of copper ions. Wang M; Yin H; Peng H; Feng M; Lu G; Dang Z J Environ Sci (China); 2019 Sep; 83():133-143. PubMed ID: 31221376 [TBL] [Abstract][Full Text] [Related]
74. Gastrointestinal absorption, metabolic debromination, and hydroxylation of three commercial polybrominated diphenyl ether mixtures by common carp. Zeng YH; Luo XJ; Chen HS; Yu LH; Chen SJ; Mai BX Environ Toxicol Chem; 2012 Apr; 31(4):731-8. PubMed ID: 22170638 [TBL] [Abstract][Full Text] [Related]
75. Contrasting hydrogen peroxide- and persulfate-driven oxidation systems: Impact of radical scavenging on treatment efficiency and cost. Crincoli KR; Huling SG Chem Eng J; 2021 Jan; 404():. PubMed ID: 34121918 [TBL] [Abstract][Full Text] [Related]
76. Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds. Ji Y; Fan Y; Liu K; Kong D; Lu J Water Res; 2015 Dec; 87():1-9. PubMed ID: 26378726 [TBL] [Abstract][Full Text] [Related]
77. Pathways and influential factors study on the formation of PBDD/Fs during co-processing BDE-209 in cement kiln simulation system. Yang J; Yu H; Xie Z; Yang Y; Zheng X; Zhang J; Huang Q; Wen T; Wang J Ecotoxicol Environ Saf; 2020 Apr; 192():110246. PubMed ID: 32028153 [TBL] [Abstract][Full Text] [Related]
78. Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: Reactivity and mechanism. Diao ZH; Xu XR; Chen H; Jiang D; Yang YX; Kong LJ; Sun YX; Hu YX; Hao QW; Liu L J Hazard Mater; 2016 Oct; 316():186-93. PubMed ID: 27235826 [TBL] [Abstract][Full Text] [Related]
79. Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe Du J; Guo W; Wang H; Yin R; Zheng H; Feng X; Che D; Ren N Water Res; 2018 Jul; 138():323-332. PubMed ID: 29627708 [TBL] [Abstract][Full Text] [Related]
80. Crucial roles of oxygen and superoxide radical in bisulfite-activated persulfate oxidation of bisphenol AF: Mechanisms, kinetics and DFT studies. Wang J; Wang C; Guo H; Ye T; Liu Y; Cheng X; Li W; Yang B; Du E J Hazard Mater; 2020 Jun; 391():122228. PubMed ID: 32062541 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]