BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32531660)

  • 1. Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems.
    Rajkovic S; Bornhöft NA; van der Weijden R; Nowack B; Adam V
    Waste Manag; 2020 Jul; 113():118-131. PubMed ID: 32531660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flows of engineered nanomaterials through the recycling process in Switzerland.
    Caballero-Guzman A; Sun T; Nowack B
    Waste Manag; 2015 Feb; 36():33-43. PubMed ID: 25524750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated dynamic probabilistic material flow analysis of engineered materials in all European countries.
    Adam V; Wu Q; Nowack B
    NanoImpact; 2021 Apr; 22():100312. PubMed ID: 35559969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic probabilistic material flow analysis of nano-SiO
    Wang Y; Nowack B
    Environ Pollut; 2018 Apr; 235():589-601. PubMed ID: 29331892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Considering the forms of released engineered nanomaterials in probabilistic material flow analysis.
    Adam V; Caballero-Guzman A; Nowack B
    Environ Pollut; 2018 Dec; 243(Pt A):17-27. PubMed ID: 30170204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland.
    Hincapié I; Caballero-Guzman A; Hiltbrunner D; Nowack B
    Waste Manag; 2015 Sep; 43():398-406. PubMed ID: 26164852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling.
    Gottschalk F; Kost E; Nowack B
    Environ Toxicol Chem; 2013 Jun; 32(6):1278-87. PubMed ID: 23418073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis.
    Gottschalk F; Sonderer T; Scholz RW; Nowack B
    Environ Toxicol Chem; 2010 May; 29(5):1036-48. PubMed ID: 20821538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nano-Ag, Nano-TiO
    Hong H; Adam V; Nowack B
    Environ Toxicol Chem; 2021 Sep; 40(9):2629-2639. PubMed ID: 34171135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions.
    Gottschalk F; Sonderer T; Scholz RW; Nowack B
    Environ Sci Technol; 2009 Dec; 43(24):9216-22. PubMed ID: 20000512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic material flow analysis of released nano titanium dioxide in Mexico.
    Ortiz-Galvez LM; Caballero-Guzman A; Lopes C; Alfaro-Moreno E
    NanoImpact; 2024 Jun; 35():100516. PubMed ID: 38838766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-quantitative analysis of solid waste flows from nano-enabled consumer products in Europe, Denmark and the United Kingdom - Abundance, distribution and management.
    Heggelund L; Hansen SF; Astrup TF; Boldrin A
    Waste Manag; 2016 Oct; 56():584-92. PubMed ID: 27311351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).
    Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B
    Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials.
    Sun TY; Bornhöft NA; Hungerbühler K; Nowack B
    Environ Sci Technol; 2016 May; 50(9):4701-11. PubMed ID: 27043743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the fate and end-of-life phase of engineered nanomaterials in the Japanese construction sector.
    Suzuki S; Part F; Matsufuji Y; Huber-Humer M
    Waste Manag; 2018 Feb; 72():389-398. PubMed ID: 29196056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the flows of engineered nanomaterials during waste handling.
    Mueller NC; Buha J; Wang J; Ulrich A; Nowack B
    Environ Sci Process Impacts; 2013 Jan; 15(1):251-9. PubMed ID: 24592442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching potential of nano-scale titanium dioxide in fresh municipal solid waste.
    Dulger M; Sakallioglu T; Temizel I; Demirel B; Copty NK; Onay TT; Uyguner-Demirel CS; Karanfil T
    Chemosphere; 2016 Feb; 144():1567-72. PubMed ID: 26517383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of the fate of engineered nanomaterials in municipal solid waste streams.
    Part F; Berge N; Baran P; Stringfellow A; Sun W; Bartelt-Hunt S; Mitrano D; Li L; Hennebert P; Quicker P; Bolyard SC; Huber-Humer M
    Waste Manag; 2018 May; 75():427-449. PubMed ID: 29477652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current limitations and challenges in nanowaste detection, characterisation and monitoring.
    Part F; Zecha G; Causon T; Sinner EK; Huber-Humer M
    Waste Manag; 2015 Sep; 43():407-20. PubMed ID: 26117420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Envisioning Nano Release Dynamics in a Changing World: Using Dynamic Probabilistic Modeling to Assess Future Environmental Emissions of Engineered Nanomaterials.
    Sun TY; Mitrano DM; Bornhöft NA; Scheringer M; Hungerbühler K; Nowack B
    Environ Sci Technol; 2017 Mar; 51(5):2854-2863. PubMed ID: 28157288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.