BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 32531679)

  • 1. Peroxiredoxin-1 ameliorates pressure overload-induced cardiac hypertrophy and fibrosis.
    Tang C; Yin G; Huang C; Wang H; Gao J; Luo J; Zhang Z; Wang J; Hong J; Chai X
    Biomed Pharmacother; 2020 Sep; 129():110357. PubMed ID: 32531679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1.
    Li H; Yao W; Irwin MG; Wang T; Wang S; Zhang L; Xia Z
    Free Radic Biol Med; 2015 Jul; 84():311-321. PubMed ID: 25795513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gene therapeutic approach to inhibit calcium and integrin binding protein 1 ameliorates maladaptive remodelling in pressure overload.
    Grund A; Szaroszyk M; Döppner JK; Malek Mohammadi M; Kattih B; Korf-Klingebiel M; Gigina A; Scherr M; Kensah G; Jara-Avaca M; Gruh I; Martin U; Wollert KC; Gohla A; Katus HA; Müller OJ; Bauersachs J; Heineke J
    Cardiovasc Res; 2019 Jan; 115(1):71-82. PubMed ID: 29931050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cathelicidin-related antimicrobial peptide suppresses cardiac hypertrophy induced by pressure overload by regulating IGFR1/PI3K/AKT and TLR9/AMPKα.
    Wang X; Chen L; Zhao X; Xiao L; Yi S; Kong Y; Jiang Y; Zhang J
    Cell Death Dis; 2020 Feb; 11(2):96. PubMed ID: 32029708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective Roles of Interferon-γ in Cardiac Hypertrophy Induced by Sustained Pressure Overload.
    Kimura A; Ishida Y; Furuta M; Nosaka M; Kuninaka Y; Taruya A; Mukaida N; Kondo T
    J Am Heart Assoc; 2018 Mar; 7(6):. PubMed ID: 29555642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of actin dynamics regulated by Rho effector mDia1 attenuates pressure overload-induced cardiac hypertrophic responses and exacerbates dysfunction.
    Abe I; Terabayashi T; Hanada K; Kondo H; Teshima Y; Ishii Y; Miyoshi M; Kira S; Saito S; Tsuchimochi H; Shirai M; Yufu K; Arakane M; Daa T; Thumkeo D; Narumiya S; Takahashi N; Ishizaki T
    Cardiovasc Res; 2021 Mar; 117(4):1103-1117. PubMed ID: 32647865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toll-like receptor-2 mediates adaptive cardiac hypertrophy in response to pressure overload through interleukin-1β upregulation via nuclear factor κB activation.
    Higashikuni Y; Tanaka K; Kato M; Nureki O; Hirata Y; Nagai R; Komuro I; Sata M
    J Am Heart Assoc; 2013 Nov; 2(6):e000267. PubMed ID: 24249711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estrogen attenuates left ventricular and cardiomyocyte hypertrophy by an estrogen receptor-dependent pathway that increases calcineurin degradation.
    Donaldson C; Eder S; Baker C; Aronovitz MJ; Weiss AD; Hall-Porter M; Wang F; Ackerman A; Karas RH; Molkentin JD; Patten RD
    Circ Res; 2009 Jan; 104(2):265-75, 11p following 275. PubMed ID: 19074476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload.
    You J; Wu J; Zhang Q; Ye Y; Wang S; Huang J; Liu H; Wang X; Zhang W; Bu L; Li J; Lin L; Ge J; Zou Y
    Am J Physiol Heart Circ Physiol; 2018 Mar; 314(3):H552-H562. PubMed ID: 29196344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant effects of hydrogen sulfide on left ventricular remodeling in smoking rats are mediated via PI3K/Akt-dependent activation of Nrf2.
    Zhou X; Zhao L; Mao J; Huang J; Chen J
    Toxicol Sci; 2015 Mar; 144(1):197-203. PubMed ID: 25516494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective effect of hydrogen sulphide against myocardial hypertrophy in mice.
    Shao M; Zhuo C; Jiang R; Chen G; Shan J; Ping J; Tian H; Wang L; Lin C; Hu L
    Oncotarget; 2017 Apr; 8(14):22344-22352. PubMed ID: 28423592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zerumbone prevents pressure overload-induced left ventricular systolic dysfunction by inhibiting cardiac hypertrophy and fibrosis.
    Sari N; Katanasaka Y; Sugiyama Y; Sunagawa Y; Miyazaki Y; Funamoto M; Shimizu S; Shimizu K; Murakami A; Mori K; Wada H; Hasegawa K; Morimoto T
    Phytomedicine; 2021 Nov; 92():153744. PubMed ID: 34563985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxyl-Terminal Modulator Protein Ameliorates Pathological Cardiac Hypertrophy by Suppressing the Protein Kinase B Signaling Pathway.
    Liu X; Yang Q; Zhu LH; Liu J; Deng KQ; Zhu XY; Liu Y; Gong J; Zhang P; Li S; Xia H; She ZG
    J Am Heart Assoc; 2018 Jun; 7(13):. PubMed ID: 29945911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triterpenoid dihydro-CDDO-trifluoroethyl amide protects against maladaptive cardiac remodeling and dysfunction in mice: a critical role of Nrf2.
    Xing Y; Niu T; Wang W; Li J; Li S; Janicki JS; Ruiz S; Meyer CJ; Wang XL; Tang D; Zhao Y; Cui T
    PLoS One; 2012; 7(9):e44899. PubMed ID: 23028668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deubiquitinating enzyme CYLD mediates pressure overload-induced cardiac maladaptive remodeling and dysfunction via downregulating Nrf2.
    Wang H; Lai Y; Mathis BJ; Wang W; Li S; Qu C; Li B; Shao L; Song H; Janicki JS; Sun SC; Wang XL; Tang D; Cui T
    J Mol Cell Cardiol; 2015 Jul; 84():143-53. PubMed ID: 25935309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocardial protection against pressure overload in mice lacking Bach1, a transcriptional repressor of heme oxygenase-1.
    Mito S; Ozono R; Oshima T; Yano Y; Watari Y; Yamamoto Y; Brydun A; Igarashi K; Yoshizumi M
    Hypertension; 2008 Jun; 51(6):1570-7. PubMed ID: 18426999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triad3A attenuates pathological cardiac hypertrophy involving the augmentation of ubiquitination-mediated degradation of TLR4 and TLR9.
    Lu X; He Y; Tang C; Wang X; Que L; Zhu G; Liu L; Ha T; Chen Q; Li C; Xu Y; Li J; Li Y
    Basic Res Cardiol; 2020 Feb; 115(2):19. PubMed ID: 32008145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed lineage kinase-3 prevents cardiac dysfunction and structural remodeling with pressure overload.
    Calamaras TD; Baumgartner RA; Aronovitz MJ; McLaughlin AL; Tam K; Richards DA; Cooper CW; Li N; Baur WE; Qiao X; Wang GR; Davis RJ; Kapur NK; Karas RH; Blanton RM
    Am J Physiol Heart Circ Physiol; 2019 Jan; 316(1):H145-H159. PubMed ID: 30362822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ATP-binding cassette transporter ABCG2 protects against pressure overload-induced cardiac hypertrophy and heart failure by promoting angiogenesis and antioxidant response.
    Higashikuni Y; Sainz J; Nakamura K; Takaoka M; Enomoto S; Iwata H; Tanaka K; Sahara M; Hirata Y; Nagai R; Sata M
    Arterioscler Thromb Vasc Biol; 2012 Mar; 32(3):654-61. PubMed ID: 22116099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice.
    Goh KY; He L; Song J; Jinno M; Rogers AJ; Sethu P; Halade GV; Rajasekaran NS; Liu X; Prabhu SD; Darley-Usmar V; Wende AR; Zhou L
    Redox Biol; 2019 Feb; 21():101100. PubMed ID: 30641298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.