These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 32531796)
21. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
23. A common thermal niche among geographically diverse populations of the widely distributed tree species Eucalyptus tereticornis: No evidence for adaptation to climate-of-origin. Drake JE; Vårhammar A; Kumarathunge D; Medlyn BE; Pfautsch S; Reich PB; Tissue DT; Ghannoum O; Tjoelker MG Glob Chang Biol; 2017 Dec; 23(12):5069-5082. PubMed ID: 28544671 [TBL] [Abstract][Full Text] [Related]
24. Identifying drivers of leaf water and cellulose stable isotope enrichment in Eucalyptus in northern Australia. Munksgaard NC; Cheesman AW; English NB; Zwart C; Kahmen A; Cernusak LA Oecologia; 2017 Jan; 183(1):31-43. PubMed ID: 27798741 [TBL] [Abstract][Full Text] [Related]
25. Mineral nutrition and elevated [CO(2)] interact to modify δ(13)C, an index of gas exchange, in Norway spruce. Marshall JD; Linder S Tree Physiol; 2013 Nov; 33(11):1132-44. PubMed ID: 23425689 [TBL] [Abstract][Full Text] [Related]
26. The partitioning of gross primary production for young Eucalyptus tereticornis trees under experimental warming and altered water availability. Drake JE; Tjoelker MG; Aspinwall MJ; Reich PB; Pfautsch S; Barton CVM New Phytol; 2019 May; 222(3):1298-1312. PubMed ID: 30536971 [TBL] [Abstract][Full Text] [Related]
27. Light inhibition of leaf respiration in field-grown Eucalyptus saligna in whole-tree chambers under elevated atmospheric CO2 and summer drought. Crous KY; Zaragoza-Castells J; Ellsworth DS; Duursma RA; Löw M; Tissue DT; Atkin OK Plant Cell Environ; 2012 May; 35(5):966-81. PubMed ID: 22091780 [TBL] [Abstract][Full Text] [Related]
28. The long way down--are carbon and oxygen isotope signals in the tree ring uncoupled from canopy physiological processes? Offermann C; Ferrio JP; Holst J; Grote R; Siegwolf R; Kayler Z; Gessler A Tree Physiol; 2011 Oct; 31(10):1088-102. PubMed ID: 21957095 [TBL] [Abstract][Full Text] [Related]
29. Combining delta 13 C and delta 18 O analyses to unravel competition, CO2 and O3 effects on the physiological performance of different-aged trees. Grams TE; Kozovits AR; Häberle KH; Matyssek R; Dawson TE Plant Cell Environ; 2007 Aug; 30(8):1023-34. PubMed ID: 17617829 [TBL] [Abstract][Full Text] [Related]
30. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer. Kroner Y; Way DA Glob Chang Biol; 2016 Aug; 22(8):2913-28. PubMed ID: 26728638 [TBL] [Abstract][Full Text] [Related]
31. Boreal and temperate trees show strong acclimation of respiration to warming. Reich PB; Sendall KM; Stefanski A; Wei X; Rich RL; Montgomery RA Nature; 2016 Mar; 531(7596):633-6. PubMed ID: 26982730 [TBL] [Abstract][Full Text] [Related]
32. Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, Eucalyptus globulus. Cernusak LA; Farquhar GD; Pate JS Tree Physiol; 2005 Feb; 25(2):129-46. PubMed ID: 15574395 [TBL] [Abstract][Full Text] [Related]
33. Suppression of nighttime sap flux with lower stem photosynthesis in Eucalyptus trees. Gao J; Zhou J; Sun Z; Niu J; Zhou C; Gu D; Huang Y; Zhao P Int J Biometeorol; 2016 Apr; 60(4):545-56. PubMed ID: 26307638 [TBL] [Abstract][Full Text] [Related]
35. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions? Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155 [TBL] [Abstract][Full Text] [Related]
36. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature. Xu CY; Salih A; Ghannoum O; Tissue DT J Exp Bot; 2012 Oct; 63(16):5829-41. PubMed ID: 22915750 [TBL] [Abstract][Full Text] [Related]
37. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Gessler A; Ferrio JP; Hommel R; Treydte K; Werner RA; Monson RK Tree Physiol; 2014 Aug; 34(8):796-818. PubMed ID: 24907466 [TBL] [Abstract][Full Text] [Related]
38. Variations in relative stomatal and biochemical limitations to photosynthesis in a young blackbutt (Eucalyptus pilularis) plantation subjected to different weed control regimes. Huang Z; Xu Z; Blumfield TJ; Bubb K Tree Physiol; 2008 Jul; 28(7):997-1005. PubMed ID: 18450564 [TBL] [Abstract][Full Text] [Related]
39. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature. Wallin G; Hall M; Slaney M; Räntfors M; Medhurst J; Linder S Tree Physiol; 2013 Nov; 33(11):1177-91. PubMed ID: 24169104 [TBL] [Abstract][Full Text] [Related]
40. Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis. Aspinwall MJ; Blackman CJ; de Dios VR; Busch FA; Rymer PD; Loik ME; Drake JE; Pfautsch S; Smith RA; Tjoelker MG; Tissue DT Tree Physiol; 2018 Sep; 38(9):1286-1301. PubMed ID: 29741732 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]